DrishtiSharma's picture
Update interim.py
d98ecb6 verified
import streamlit as st
import os
from openai import OpenAI
import tempfile
from langchain.chains import ConversationalRetrievalChain
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.document_loaders import (
PyPDFLoader,
TextLoader,
CSVLoader
)
from datetime import datetime
from pydub import AudioSegment
import pytz
from langchain.chains import ConversationalRetrievalChain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_community.document_loaders import PyPDFLoader, TextLoader, CSVLoader
import os
import tempfile
from datetime import datetime
import pytz
class DocumentRAG:
def __init__(self):
self.document_store = None
self.qa_chain = None
self.document_summary = ""
self.chat_history = []
self.last_processed_time = None
self.api_key = os.getenv("OPENAI_API_KEY") # Fetch the API key from environment variable
self.init_time = datetime.now(pytz.UTC)
if not self.api_key:
raise ValueError("API Key not found. Make sure to set the 'OPENAI_API_KEY' environment variable.")
# Persistent directory for Chroma to avoid tenant-related errors
self.chroma_persist_dir = "./chroma_storage"
os.makedirs(self.chroma_persist_dir, exist_ok=True)
def process_documents(self, uploaded_files):
"""Process uploaded files by saving them temporarily and extracting content."""
if not self.api_key:
return "Please set the OpenAI API key in the environment variables."
if not uploaded_files:
return "Please upload documents first."
try:
documents = []
for uploaded_file in uploaded_files:
# Save uploaded file to a temporary location
temp_file_path = tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]).name
with open(temp_file_path, "wb") as temp_file:
temp_file.write(uploaded_file.read())
# Determine the loader based on the file type
if temp_file_path.endswith('.pdf'):
loader = PyPDFLoader(temp_file_path)
elif temp_file_path.endswith('.txt'):
loader = TextLoader(temp_file_path)
elif temp_file_path.endswith('.csv'):
loader = CSVLoader(temp_file_path)
else:
return f"Unsupported file type: {uploaded_file.name}"
# Load the documents
try:
documents.extend(loader.load())
except Exception as e:
return f"Error loading {uploaded_file.name}: {str(e)}"
if not documents:
return "No valid documents were processed. Please check your files."
# Split text for better processing
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
documents = text_splitter.split_documents(documents)
# Combine text for later summary generation
self.document_text = " ".join([doc.page_content for doc in documents]) # Store for later use
# Create embeddings and initialize retrieval chain
embeddings = OpenAIEmbeddings(api_key=self.api_key)
self.document_store = Chroma.from_documents(
documents,
embeddings,
persist_directory=self.chroma_persist_dir # Persistent directory for Chroma
)
self.qa_chain = ConversationalRetrievalChain.from_llm(
ChatOpenAI(temperature=0, model_name='gpt-4', api_key=self.api_key),
self.document_store.as_retriever(search_kwargs={'k': 6}),
return_source_documents=True,
verbose=False
)
self.last_processed_time = datetime.now(pytz.UTC)
return "Documents processed successfully!"
except Exception as e:
return f"Error processing documents: {str(e)}"
def generate_summary(self, text, language):
"""Generate a summary of the provided text in the specified language."""
if not self.api_key:
return "API Key not set. Please set it in the environment variables."
try:
client = OpenAI(api_key=self.api_key)
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": f"Summarize the document content concisely in {language}. Provide 3-5 key points for discussion."},
{"role": "user", "content": text[:4000]}
],
temperature=0.3
)
return response.choices[0].message.content
except Exception as e:
return f"Error generating summary: {str(e)}"
def create_podcast(self, language):
"""Generate a podcast script and audio based on doc summary in the specified language."""
if not self.document_summary:
return "Please process documents before generating a podcast.", None
if not self.api_key:
return "Please set the OpenAI API key in the environment variables.", None
try:
client = OpenAI(api_key=self.api_key)
# Generate podcast script
script_response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": f"You are a professional podcast producer. Create a natural dialogue in {language} based on the provided document summary."},
{"role": "user", "content": f"""Based on the following document summary, create a 1-2 minute podcast script:
1. Clearly label the dialogue as 'Host 1:' and 'Host 2:'
2. Keep the content engaging and insightful.
3. Use conversational language suitable for a podcast.
4. Ensure the script has a clear opening and closing.
Document Summary: {self.document_summary}"""}
],
temperature=0.7
)
script = script_response.choices[0].message.content
if not script:
return "Error: Failed to generate podcast script.", None
# Convert script to audio
final_audio = AudioSegment.empty()
is_first_speaker = True
lines = [line.strip() for line in script.split("\n") if line.strip()]
for line in lines:
if ":" not in line:
continue
speaker, text = line.split(":", 1)
if not text.strip():
continue
try:
voice = "nova" if is_first_speaker else "onyx"
audio_response = client.audio.speech.create(
model="tts-1",
voice=voice,
input=text.strip()
)
temp_audio_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
audio_response.stream_to_file(temp_audio_file.name)
segment = AudioSegment.from_file(temp_audio_file.name)
final_audio += segment
final_audio += AudioSegment.silent(duration=300)
is_first_speaker = not is_first_speaker
except Exception as e:
print(f"Error generating audio for line: {text}")
print(f"Details: {e}")
continue
if len(final_audio) == 0:
return "Error: No audio could be generated.", None
output_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
final_audio.export(output_file, format="mp3")
return script, output_file
except Exception as e:
return f"Error generating podcast: {str(e)}", None
def handle_query(self, question, history, language):
"""Handle user queries in the specified language."""
if not self.qa_chain:
return history + [("System", "Please process the documents first.")]
try:
preface = """
Instruction: Respond in {language}. Be professional and concise, keeping the response under 300 words.
If you cannot provide an answer, say: "I am not sure about this question. Please try asking something else."
"""
query = f"{preface}\nQuery: {question}"
result = self.qa_chain({
"question": query,
"chat_history": [(q, a) for q, a in history]
})
if "answer" not in result:
return history + [("System", "Sorry, an error occurred.")]
history.append((question, result["answer"]))
return history
except Exception as e:
return history + [("System", f"Error: {str(e)}")]
# Initialize RAG system in session state
if "rag_system" not in st.session_state:
st.session_state.rag_system = DocumentRAG()
# Sidebar
with st.sidebar:
st.title("About")
st.markdown(
"""
This app is inspired by the [RAG_HW HuggingFace Space](https://huggingface.co/spaces/wint543/RAG_HW).
It allows users to upload documents, generate summaries, ask questions, and create podcasts.
"""
)
st.markdown("### Steps:")
st.markdown("1. Upload documents.")
st.markdown("2. Generate summary.")
st.markdown("3. Ask questions.")
st.markdown("4. Create podcast.")
# Streamlit UI
# Sidebar
#with st.sidebar:
#st.title("About")
#st.markdown(
#"""
#This app is inspired by the [RAG_HW HuggingFace Space](https://huggingface.co/spaces/wint543/RAG_HW).
#It allows users to:
#1. Upload and process documents
#2. Generate summaries
#3. Ask questions
#4. Create podcasts
#"""
#)
# Main App
st.title("Document Analyzer & Podcast Generator")
# Step 1: Upload and Process Documents
st.subheader("Step 1: Upload and Process Documents")
uploaded_files = st.file_uploader("Upload files (PDF, TXT, CSV)", accept_multiple_files=True)
if st.button("Process Documents"):
if uploaded_files:
with st.spinner("Processing documents, please wait..."):
result = st.session_state.rag_system.process_documents(uploaded_files)
if "successfully" in result:
st.success(result)
else:
st.error(result)
else:
st.warning("No files uploaded.")
# Step 2: Generate Summaries
st.subheader("Step 2: Generate Summaries")
st.write("Select Summary Language:")
summary_language_options = ["English", "Hindi", "Spanish", "French", "German", "Chinese", "Japanese"]
summary_language = st.radio(
"",
summary_language_options,
horizontal=True,
key="summary_language"
)
if st.button("Generate Summary"):
if hasattr(st.session_state.rag_system, "document_text") and st.session_state.rag_system.document_text:
with st.spinner("Generating summary, please wait..."):
summary = st.session_state.rag_system.generate_summary(st.session_state.rag_system.document_text, summary_language)
if summary:
st.session_state.rag_system.document_summary = summary
st.text_area("Document Summary", summary, height=200)
st.success("Summary generated successfully!")
else:
st.error("Failed to generate summary.")
else:
st.info("Please process documents first to generate summaries.")
# Step 3: Ask Questions
st.subheader("Step 3: Ask Questions")
st.write("Select Q&A Language:")
qa_language_options = ["English", "Hindi", "Spanish", "French", "German", "Chinese", "Japanese"]
qa_language = st.radio(
"",
qa_language_options,
horizontal=True,
key="qa_language"
)
if st.session_state.rag_system.qa_chain:
history = []
user_question = st.text_input("Ask a question:")
if st.button("Submit Question"):
with st.spinner("Answering your question, please wait..."):
history = st.session_state.rag_system.handle_query(user_question, history, qa_language)
for question, answer in history:
st.chat_message("user").write(question)
st.chat_message("assistant").write(answer)
else:
st.info("Please process documents first to enable Q&A.")
# Step 4: Generate Podcast
st.subheader("Step 4: Generate Podcast")
st.write("Select Podcast Language:")
podcast_language_options = ["English", "Hindi", "Spanish", "French", "German", "Chinese", "Japanese"]
podcast_language = st.radio(
"",
podcast_language_options,
horizontal=True,
key="podcast_language"
)
if st.session_state.rag_system.document_summary:
if st.button("Generate Podcast"):
with st.spinner("Generating podcast, please wait..."):
script, audio_path = st.session_state.rag_system.create_podcast(podcast_language)
if audio_path:
st.text_area("Generated Podcast Script", script, height=200)
st.audio(audio_path, format="audio/mp3")
st.success("Podcast generated successfully! You can listen to it above.")
else:
st.error(script)
else:
st.info("Please process documents and generate summaries before creating a podcast.")