# add support for multiple pdf/pdf urls + audio query + generate qa audio # include - key features of the app + limitations + future work + workflow diagram + sample outputs # import streamlit as st import os from openai import OpenAI import tempfile from langchain.chains import ConversationalRetrievalChain from langchain_openai import ChatOpenAI, OpenAIEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Chroma from langchain_community.document_loaders import ( PyPDFLoader, TextLoader, CSVLoader ) from datetime import datetime from pydub import AudioSegment import pytz from langchain.chains import ConversationalRetrievalChain from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_openai import ChatOpenAI, OpenAIEmbeddings from langchain_community.vectorstores import Chroma from langchain_community.document_loaders import PyPDFLoader, TextLoader, CSVLoader import os import tempfile from datetime import datetime import pytz class DocumentRAG: def __init__(self): self.document_store = None self.qa_chain = None self.document_summary = "" self.chat_history = [] self.last_processed_time = None self.api_key = os.getenv("OPENAI_API_KEY") # Fetch the API key from environment variable self.init_time = datetime.now(pytz.UTC) if not self.api_key: raise ValueError("API Key not found. Make sure to set the 'OPENAI_API_KEY' environment variable.") # Persistent directory for Chroma to avoid tenant-related errors self.chroma_persist_dir = "./chroma_storage" os.makedirs(self.chroma_persist_dir, exist_ok=True) def process_documents(self, uploaded_files): """Process uploaded files by saving them temporarily and extracting content.""" if not self.api_key: return "Please set the OpenAI API key in the environment variables." if not uploaded_files: return "Please upload documents first." try: documents = [] for uploaded_file in uploaded_files: # Save uploaded file to a temporary location temp_file_path = tempfile.NamedTemporaryFile( delete=False, suffix=os.path.splitext(uploaded_file.name)[1] ).name with open(temp_file_path, "wb") as temp_file: temp_file.write(uploaded_file.read()) # Determine the loader based on the file type if temp_file_path.endswith('.pdf'): loader = PyPDFLoader(temp_file_path) elif temp_file_path.endswith('.txt'): loader = TextLoader(temp_file_path) elif temp_file_path.endswith('.csv'): loader = CSVLoader(temp_file_path) else: return f"Unsupported file type: {uploaded_file.name}" # Load the documents try: documents.extend(loader.load()) except Exception as e: return f"Error loading {uploaded_file.name}: {str(e)}" if not documents: return "No valid documents were processed. Please check your files." # Split text for better processing text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200, length_function=len ) documents = text_splitter.split_documents(documents) # Combine text for later summary generation self.document_text = " ".join([doc.page_content for doc in documents]) # Store for later use # Create embeddings and initialize retrieval chain embeddings = OpenAIEmbeddings(api_key=self.api_key) self.document_store = Chroma.from_documents( documents, embeddings, persist_directory=self.chroma_persist_dir # Persistent directory for Chroma ) self.qa_chain = ConversationalRetrievalChain.from_llm( ChatOpenAI(temperature=0, model_name='gpt-4', api_key=self.api_key), self.document_store.as_retriever(search_kwargs={'k': 6}), return_source_documents=True, verbose=False ) self.last_processed_time = datetime.now(pytz.UTC) return "Documents processed successfully!" except Exception as e: return f"Error processing documents: {str(e)}" def generate_summary(self, text, language): """Generate a summary of the provided text focusing on specific sections in the specified language.""" if not self.api_key: return "API Key not set. Please set it in the environment variables." try: client = OpenAI(api_key=self.api_key) response = client.chat.completions.create( model="gpt-4", messages=[ {"role": "system", "content": f""" Summarize the following document focusing mainly on these sections: 1. Abstract 2. In the Introduction, specifically focus on the portion where the key contributions of the research paper are highlighted. 3. Conclusion 4. Limitations 5. Future Work Ensure the summary is concise, logically ordered, and suitable for {language}. Provide 7-9 key points for discussion in a structured format."""}, {"role": "user", "content": text[:4000]} ], temperature=0.3 ) return response.choices[0].message.content except Exception as e: return f"Error generating summary: {str(e)}" def create_podcast(self, language): """Generate a podcast script and audio based on doc summary in the specified language.""" if not self.document_summary: return "Please process documents before generating a podcast.", None if not self.api_key: return "Please set the OpenAI API key in the environment variables.", None try: client = OpenAI(api_key=self.api_key) # Generate podcast script script_response = client.chat.completions.create( model="gpt-4", messages=[ {"role": "system", "content": f""" You are a professional podcast producer. Create a 1-2 minute structured podcast dialogue in {language} based on the provided document summary. Follow this flow: 1. Brief Introduction of the Topic 2. Highlight the limitations of existing methods, the key contributions of the research paper, and its advantages over the current state of the art. 3. Discuss Limitations of the research work. 4. Present the Conclusion 5. Mention Future Work Clearly label the dialogue as 'Host 1:' and 'Host 2:'. Maintain a tone that is engaging, conversational, and insightful, while ensuring the flow remains logical and natural. Include a well-structured opening to introduce the topic and a clear, thoughtful closing that provides a smooth conclusion, avoiding any abrupt endings.""" }, {"role": "user", "content": f""" Document Summary: {self.document_summary}"""} ], temperature=0.7 ) script = script_response.choices[0].message.content if not script: return "Error: Failed to generate podcast script.", None # Convert script to audio final_audio = AudioSegment.empty() is_first_speaker = True lines = [line.strip() for line in script.split("\n") if line.strip()] for line in lines: if ":" not in line: continue speaker, text = line.split(":", 1) if not text.strip(): continue try: voice = "nova" if is_first_speaker else "onyx" audio_response = client.audio.speech.create( model="tts-1", voice=voice, input=text.strip() ) temp_audio_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") audio_response.stream_to_file(temp_audio_file.name) segment = AudioSegment.from_file(temp_audio_file.name) final_audio += segment final_audio += AudioSegment.silent(duration=300) is_first_speaker = not is_first_speaker except Exception as e: print(f"Error generating audio for line: {text}") print(f"Details: {e}") continue if len(final_audio) == 0: return "Error: No audio could be generated.", None output_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name final_audio.export(output_file, format="mp3") return script, output_file except Exception as e: return f"Error generating podcast: {str(e)}", None def handle_query(self, question, history, language): """Handle user queries in the specified language.""" if not self.qa_chain: return history + [("System", "Please process the documents first.")] try: preface = ( f"Instruction: Respond in {language}. Be professional and concise, " f"keeping the response under 300 words. If you cannot provide an answer, say: " f'"I am not sure about this question. Please try asking something else."' ) query = f"{preface}\nQuery: {question}" result = self.qa_chain({ "question": query, "chat_history": [(q, a) for q, a in history] }) if "answer" not in result: return history + [("System", "Sorry, an error occurred.")] history.append((question, result["answer"])) return history except Exception as e: return history + [("System", f"Error: {str(e)}")] # Initialize RAG system in session state if "rag_system" not in st.session_state: st.session_state.rag_system = DocumentRAG() # Sidebar with st.sidebar: st.title("About") st.markdown( """ This app is inspired by the [RAG_HW HuggingFace Space](https://huggingface.co/spaces/wint543/RAG_HW). It allows users to upload documents, generate summaries, ask questions, and create podcasts. """ ) st.markdown("### Steps:") st.markdown("1. Upload documents.") st.markdown("2. Generate summary.") st.markdown("3. Ask questions.") st.markdown("4. Create podcast.") st.markdown("### Credits:") st.markdown("Image Source: [Geeksforgeeks](https://www.geeksforgeeks.org/how-to-convert-document-into-podcast/)") # Streamlit UI st.title("Document Analyzer & Podcast Generator") st.image("./cover_image.png", use_container_width=True) # Step 1: Upload and Process Documents st.subheader("Step 1: Upload and Process Documents") uploaded_files = st.file_uploader("Upload files (PDF, TXT, CSV)", accept_multiple_files=True) if st.button("Process Documents"): if uploaded_files: with st.spinner("Processing documents, please wait..."): result = st.session_state.rag_system.process_documents(uploaded_files) if "successfully" in result: st.success(result) else: st.error(result) else: st.warning("No files uploaded.") # Step 2: Generate Summary st.subheader("Step 2: Generate Summary") st.write("Select Summary Language:") summary_language_options = ["English", "Hindi", "Spanish", "French", "German", "Chinese", "Japanese"] summary_language = st.radio( "", summary_language_options, horizontal=True, key="summary_language" ) if st.button("Generate Summary"): if hasattr(st.session_state.rag_system, "document_text") and st.session_state.rag_system.document_text: with st.spinner("Generating summary, please wait..."): summary = st.session_state.rag_system.generate_summary(st.session_state.rag_system.document_text, summary_language) if summary: st.session_state.rag_system.document_summary = summary st.text_area("Document Summary", summary, height=200) st.success("Summary generated successfully!") else: st.error("Failed to generate summary.") else: st.info("Please process documents first to generate summary.") # Step 3: Ask Questions st.subheader("Step 3: Ask Questions") st.write("Select Q&A Language:") qa_language_options = ["English", "Hindi", "Spanish", "French", "German", "Chinese", "Japanese"] qa_language = st.radio( "", qa_language_options, horizontal=True, key="qa_language" ) if st.session_state.rag_system.qa_chain: history = [] user_question = st.text_input("Ask a question:") if st.button("Submit Question"): with st.spinner("Answering your question, please wait..."): history = st.session_state.rag_system.handle_query(user_question, history, qa_language) for question, answer in history: st.chat_message("user").write(question) st.chat_message("assistant").write(answer) else: st.info("Please process documents first to enable Q&A.") # Step 4: Generate Podcast st.subheader("Step 4: Generate Podcast") st.write("Select Podcast Language:") podcast_language_options = ["English", "Hindi", "Spanish", "French", "German", "Chinese", "Japanese"] podcast_language = st.radio( "", podcast_language_options, horizontal=True, key="podcast_language" ) if st.session_state.rag_system.document_summary: if st.button("Generate Podcast"): with st.spinner("Generating podcast, please wait..."): script, audio_path = st.session_state.rag_system.create_podcast(podcast_language) if audio_path: st.text_area("Generated Podcast Script", script, height=200) st.audio(audio_path, format="audio/mp3") st.success("Podcast generated successfully! You can listen to it above.") else: st.error(script) else: st.info("Please process documents and generate summary before creating a podcast.")