File size: 3,849 Bytes
198b160 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import gradio as gr
import torch
import time
import json
import uuid
import os
import pytz
from datetime import datetime
from transformers import AutoTokenizer
from unsloth import FastLanguageModel
from pathlib import Path
from huggingface_hub import CommitScheduler
# Load HF token from the environment
token = os.environ["HF_TOKEN"]
# Model Setup
max_seq_length = 2048
load_in_4bit = True
name = "large-traversaal/Phi-4-Hindi"
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=name,
max_seq_length=max_seq_length,
load_in_4bit=load_in_4bit,
)
model = FastLanguageModel.get_peft_model(
model,
r=16,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
lora_alpha=16,
lora_dropout=0,
bias="none",
use_gradient_checkpointing="unsloth",
random_state=3407,
use_rslora=False,
loftq_config=None,
)
FastLanguageModel.for_inference(model)
# Task-Specific Prompt Mapping
option_mapping = {
"translation": "### TRANSLATION ###",
"mcq": "### MCQ ###",
"nli": "### NLI ###",
"summarization": "### SUMMARIZATION ###",
"long response": "### LONG RESPONSE ###",
"direct response": "### DIRECT RESPONSE ###",
"paraphrase": "### PARAPHRASE ###",
"code": "### CODE ###",
}
# Set up logging folder and CommitScheduler
log_folder = Path("logs")
log_folder.mkdir(parents=True, exist_ok=True)
log_file = log_folder / f"chat_log_{uuid.uuid4()}.json"
scheduler = CommitScheduler(
repo_id="DrishtiSharma/phi-4-unsloth-logs",
repo_type="dataset",
folder_path=log_folder,
path_in_repo="data",
every=10,
token=token
)
# Fixed timezone
timezone = pytz.timezone("UTC")
def generate_response(message, temperature, max_new_tokens, top_p, task):
append_text = option_mapping.get(task, "")
prompt = f"### INPUT : {message} {append_text} RESPONSE : "
print(f"Prompt: {prompt}")
start_time = time.time()
inputs = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
input_ids=inputs,
max_new_tokens=max_new_tokens,
use_cache=True,
temperature=temperature,
top_p=top_p,
pad_token_id=tokenizer.eos_token_id,
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
processed_response = response.split("### RESPONSE :")[-1].strip()
end_time = time.time()
response_time = round(end_time - start_time, 2)
timestamp = datetime.now(timezone).strftime("%Y-%m-%d %H:%M:%S %Z")
log_data = {
"timestamp": timestamp,
"input": message,
"output": processed_response,
"response_time": response_time,
"temperature": temperature,
"max_tokens": max_new_tokens,
"top_p": top_p
}
with scheduler.lock:
with log_file.open("a") as f:
f.write(json.dumps(log_data) + "\n")
return processed_response
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## Chat with Phi-4-Hindi")
task_dropdown = gr.Dropdown(
choices=list(option_mapping.keys()),
value="long response",
label="Select Task"
)
message_input = gr.Textbox(label="Enter your message")
with gr.Row():
temperature_slider = gr.Slider(0.1, 1.0, value=0.7, step=0.1, label="Temperature")
top_p_slider = gr.Slider(0.1, 1.0, value=0.9, step=0.1, label="Top P")
max_tokens_slider = gr.Slider(50, 800, value=200, step=50, label="Max Tokens")
output_box = gr.Textbox(label="Generated Response")
generate_btn = gr.Button("Generate")
generate_btn.click(
generate_response,
inputs=[message_input, temperature_slider, max_tokens_slider, top_p_slider, task_dropdown],
outputs=output_box
)
demo.launch() |