Create lab/app.py
Browse files- lab/app.py +72 -0
lab/app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from transformers import AutoTokenizer
|
5 |
+
from unsloth import FastLanguageModel
|
6 |
+
|
7 |
+
# Model Setup
|
8 |
+
max_seq_length = 2048
|
9 |
+
load_in_4bit = True
|
10 |
+
name = "large-traversaal/Phi-4-Hindi"
|
11 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
12 |
+
model_name=name,
|
13 |
+
max_seq_length=max_seq_length,
|
14 |
+
load_in_4bit=load_in_4bit,
|
15 |
+
)
|
16 |
+
|
17 |
+
model = FastLanguageModel.get_peft_model(
|
18 |
+
model,
|
19 |
+
r=16,
|
20 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
|
21 |
+
lora_alpha=16,
|
22 |
+
lora_dropout=0,
|
23 |
+
bias="none",
|
24 |
+
use_gradient_checkpointing="unsloth",
|
25 |
+
random_state=3407,
|
26 |
+
use_rslora=False,
|
27 |
+
loftq_config=None,
|
28 |
+
)
|
29 |
+
FastLanguageModel.for_inference(model)
|
30 |
+
|
31 |
+
def generate_response(task, input_text, temperature, top_p, max_tokens):
|
32 |
+
prompt = f"### INPUT : {input_text} RESPONSE : "
|
33 |
+
message = [{"role": "user", "content": prompt}]
|
34 |
+
inputs = tokenizer.apply_chat_template(message, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
|
35 |
+
|
36 |
+
outputs = model.generate(
|
37 |
+
input_ids=inputs,
|
38 |
+
max_new_tokens=max_tokens,
|
39 |
+
use_cache=True,
|
40 |
+
temperature=temperature,
|
41 |
+
top_p=top_p,
|
42 |
+
pad_token_id=tokenizer.eos_token_id,
|
43 |
+
)
|
44 |
+
|
45 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
46 |
+
processed_response = response.split("### RESPONSE :assistant")[-1].strip()
|
47 |
+
return processed_response
|
48 |
+
|
49 |
+
# Gradio Interface
|
50 |
+
def gradio_ui():
|
51 |
+
with gr.Blocks() as demo:
|
52 |
+
gr.Markdown("## Test Space: Chat with Phi-4-Hindi")
|
53 |
+
with gr.Row():
|
54 |
+
task = gr.Dropdown([
|
55 |
+
"Long Response", "Short Response", "NLI", "Translation", "MCQ", "Cross-Lingual"
|
56 |
+
], label="Select Task")
|
57 |
+
input_text = gr.Textbox(label="Input Text")
|
58 |
+
|
59 |
+
with gr.Row():
|
60 |
+
temperature = gr.Slider(0.1, 1.0, value=0.7, step=0.1, label="Temperature")
|
61 |
+
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.1, label="Top P")
|
62 |
+
max_tokens = gr.Slider(50, 800, value=200, step=50, label="Max Tokens")
|
63 |
+
|
64 |
+
output_text = gr.Textbox(label="Generated Response")
|
65 |
+
btn = gr.Button("Generate")
|
66 |
+
btn.click(generate_response, inputs=[task, input_text, temperature, top_p, max_tokens], outputs=output_text)
|
67 |
+
|
68 |
+
return demo
|
69 |
+
|
70 |
+
# Launch Gradio App
|
71 |
+
demo = gradio_ui()
|
72 |
+
demo.launch()
|