import gradio as gr import torch import time import json import uuid import os import pytz from datetime import datetime from transformers import AutoTokenizer from unsloth import FastLanguageModel from pathlib import Path from huggingface_hub import CommitScheduler # Load HF token from the environment token = os.environ["HF_TOKEN"] # Model Setup max_seq_length = 2048 load_in_4bit = True name = "large-traversaal/Phi-4-Hindi" model, tokenizer = FastLanguageModel.from_pretrained( model_name=name, max_seq_length=max_seq_length, load_in_4bit=load_in_4bit, ) model = FastLanguageModel.get_peft_model( model, r=16, target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], lora_alpha=16, lora_dropout=0, bias="none", use_gradient_checkpointing="unsloth", random_state=3407, use_rslora=False, loftq_config=None, ) FastLanguageModel.for_inference(model) # Task-Specific Prompt Mapping option_mapping = { "translation": "### TRANSLATION ###", "mcq": "### MCQ ###", "nli": "### NLI ###", "summarization": "### SUMMARIZATION ###", "long response": "### LONG RESPONSE ###", "direct response": "### DIRECT RESPONSE ###", "paraphrase": "### PARAPHRASE ###", "code": "### CODE ###", } # Set up logging folder and CommitScheduler log_folder = Path("logs") log_folder.mkdir(parents=True, exist_ok=True) log_file = log_folder / f"chat_log_{uuid.uuid4()}.json" scheduler = CommitScheduler( repo_id="DrishtiSharma/phi-4-unsloth-logs", repo_type="dataset", folder_path=log_folder, path_in_repo="data", every=10, token=token ) # Fixed timezone timezone = pytz.timezone("UTC") def generate_response(message, temperature, max_new_tokens, top_p, task): append_text = option_mapping.get(task, "") prompt = f"### INPUT : {message} {append_text} RESPONSE : " print(f"Prompt: {prompt}") start_time = time.time() inputs = tokenizer.encode(prompt, return_tensors="pt").to(model.device) outputs = model.generate( input_ids=inputs, max_new_tokens=max_new_tokens, use_cache=True, temperature=temperature, top_p=top_p, pad_token_id=tokenizer.eos_token_id, ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) processed_response = response.split("### RESPONSE :")[-1].strip() end_time = time.time() response_time = round(end_time - start_time, 2) timestamp = datetime.now(timezone).strftime("%Y-%m-%d %H:%M:%S %Z") log_data = { "timestamp": timestamp, "input": message, "output": processed_response, "response_time": response_time, "temperature": temperature, "max_tokens": max_new_tokens, "top_p": top_p } with scheduler.lock: with log_file.open("a") as f: f.write(json.dumps(log_data) + "\n") return processed_response # Gradio UI with gr.Blocks() as demo: gr.Markdown("## Chat with Phi-4-Hindi") task_dropdown = gr.Dropdown( choices=list(option_mapping.keys()), value="long response", label="Select Task" ) message_input = gr.Textbox(label="Enter your message") with gr.Row(): temperature_slider = gr.Slider(0.1, 1.0, value=0.7, step=0.1, label="Temperature") top_p_slider = gr.Slider(0.1, 1.0, value=0.9, step=0.1, label="Top P") max_tokens_slider = gr.Slider(50, 800, value=200, step=50, label="Max Tokens") output_box = gr.Textbox(label="Generated Response") generate_btn = gr.Button("Generate") generate_btn.click( generate_response, inputs=[message_input, temperature_slider, max_tokens_slider, top_p_slider, task_dropdown], outputs=output_box ) demo.launch()