# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import warnings
from typing import Callable, List, Optional, Union

import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
from transformers import CLIPTextModel, CLIPTokenizer

from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import FromSingleFileMixin
from ...models import AutoencoderKL, UNet2DConditionModel
from ...schedulers import EulerDiscreteScheduler
from ...utils import deprecate, logging
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.preprocess
def preprocess(image):
    warnings.warn(
        "The preprocess method is deprecated and will be removed in a future version. Please"
        " use VaeImageProcessor.preprocess instead",
        FutureWarning,
    )
    if isinstance(image, torch.Tensor):
        return image
    elif isinstance(image, PIL.Image.Image):
        image = [image]

    if isinstance(image[0], PIL.Image.Image):
        w, h = image[0].size
        w, h = (x - x % 64 for x in (w, h))  # resize to integer multiple of 64

        image = [np.array(i.resize((w, h)))[None, :] for i in image]
        image = np.concatenate(image, axis=0)
        image = np.array(image).astype(np.float32) / 255.0
        image = image.transpose(0, 3, 1, 2)
        image = 2.0 * image - 1.0
        image = torch.from_numpy(image)
    elif isinstance(image[0], torch.Tensor):
        image = torch.cat(image, dim=0)
    return image


class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, FromSingleFileMixin):
    r"""
    Pipeline for upscaling Stable Diffusion output image resolution by a factor of 2.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    The pipeline also inherits the following loading methods:
        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer ([`~transformers.CLIPTokenizer`]):
            A `CLIPTokenizer` to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A `UNet2DConditionModel` to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A [`EulerDiscreteScheduler`] to be used in combination with `unet` to denoise the encoded image latents.
    """

    model_cpu_offload_seq = "text_encoder->unet->vae"

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: EulerDiscreteScheduler,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, resample="bicubic")

    def _encode_prompt(self, prompt, device, do_classifier_free_guidance, negative_prompt):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `list(int)`):
                prompt to be encoded
            device: (`torch.device`):
                torch device
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
        """
        batch_size = len(prompt) if isinstance(prompt, list) else 1

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_length=True,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids

        untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer.model_max_length} tokens: {removed_text}"
            )

        text_encoder_out = self.text_encoder(
            text_input_ids.to(device),
            output_hidden_states=True,
        )
        text_embeddings = text_encoder_out.hidden_states[-1]
        text_pooler_out = text_encoder_out.pooler_output

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            max_length = text_input_ids.shape[-1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_length=True,
                return_tensors="pt",
            )

            uncond_encoder_out = self.text_encoder(
                uncond_input.input_ids.to(device),
                output_hidden_states=True,
            )

            uncond_embeddings = uncond_encoder_out.hidden_states[-1]
            uncond_pooler_out = uncond_encoder_out.pooler_output

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
            text_pooler_out = torch.cat([uncond_pooler_out, text_pooler_out])

        return text_embeddings, text_pooler_out

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
    def decode_latents(self, latents):
        deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
        deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)

        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.decode(latents, return_dict=False)[0]
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        return image

    def check_inputs(self, prompt, image, callback_steps):
        if not isinstance(prompt, str) and not isinstance(prompt, list):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if (
            not isinstance(image, torch.Tensor)
            and not isinstance(image, PIL.Image.Image)
            and not isinstance(image, list)
        ):
            raise ValueError(
                f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or `list` but is {type(image)}"
            )

        # verify batch size of prompt and image are same if image is a list or tensor
        if isinstance(image, list) or isinstance(image, torch.Tensor):
            if isinstance(prompt, str):
                batch_size = 1
            else:
                batch_size = len(prompt)
            if isinstance(image, list):
                image_batch_size = len(image)
            else:
                image_batch_size = image.shape[0] if image.ndim == 4 else 1
            if batch_size != image_batch_size:
                raise ValueError(
                    f"`prompt` has batch size {batch_size} and `image` has batch size {image_batch_size}."
                    " Please make sure that passed `prompt` matches the batch size of `image`."
                )

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.prepare_latents
    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
        shape = (batch_size, num_channels_latents, height, width)
        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            if latents.shape != shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
    def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
        r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.

        The suffixes after the scaling factors represent the stages where they are being applied.

        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
        that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.

        Args:
            s1 (`float`):
                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            s2 (`float`):
                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
        """
        if not hasattr(self, "unet"):
            raise ValueError("The pipeline must have `unet` for using FreeU.")
        self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
    def disable_freeu(self):
        """Disables the FreeU mechanism if enabled."""
        self.unet.disable_freeu()

    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]],
        image: PipelineImageInput = None,
        num_inference_steps: int = 75,
        guidance_scale: float = 9.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide image upscaling.
            image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
                `Image` or tensor representing an image batch to be upscaled. If it's a tensor, it can be either a
                latent output from a Stable Diffusion model or an image tensor in the range `[-1, 1]`. It is considered
                a `latent` if `image.shape[1]` is `4`; otherwise, it is considered to be an image representation and
                encoded using this pipeline's `vae` encoder.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that calls every `callback_steps` steps during inference. The function is called with the
                following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function is called. If not specified, the callback is called at
                every step.

        Examples:
        ```py
        >>> from diffusers import StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline
        >>> import torch


        >>> pipeline = StableDiffusionPipeline.from_pretrained(
        ...     "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16
        ... )
        >>> pipeline.to("cuda")

        >>> model_id = "stabilityai/sd-x2-latent-upscaler"
        >>> upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
        >>> upscaler.to("cuda")

        >>> prompt = "a photo of an astronaut high resolution, unreal engine, ultra realistic"
        >>> generator = torch.manual_seed(33)

        >>> low_res_latents = pipeline(prompt, generator=generator, output_type="latent").images

        >>> with torch.no_grad():
        ...     image = pipeline.decode_latents(low_res_latents)
        >>> image = pipeline.numpy_to_pil(image)[0]

        >>> image.save("../images/a1.png")

        >>> upscaled_image = upscaler(
        ...     prompt=prompt,
        ...     image=low_res_latents,
        ...     num_inference_steps=20,
        ...     guidance_scale=0,
        ...     generator=generator,
        ... ).images[0]

        >>> upscaled_image.save("../images/a2.png")
        ```

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images.
        """

        # 1. Check inputs
        self.check_inputs(prompt, image, callback_steps)

        # 2. Define call parameters
        batch_size = 1 if isinstance(prompt, str) else len(prompt)
        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        if guidance_scale == 0:
            prompt = [""] * batch_size

        # 3. Encode input prompt
        text_embeddings, text_pooler_out = self._encode_prompt(
            prompt, device, do_classifier_free_guidance, negative_prompt
        )

        # 4. Preprocess image
        image = self.image_processor.preprocess(image)
        image = image.to(dtype=text_embeddings.dtype, device=device)
        if image.shape[1] == 3:
            # encode image if not in latent-space yet
            image = self.vae.encode(image).latent_dist.sample() * self.vae.config.scaling_factor

        # 5. set timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        batch_multiplier = 2 if do_classifier_free_guidance else 1
        image = image[None, :] if image.ndim == 3 else image
        image = torch.cat([image] * batch_multiplier)

        # 5. Add noise to image (set to be 0):
        # (see below notes from the author):
        # "the This step theoretically can make the model work better on out-of-distribution inputs, but mostly just seems to make it match the input less, so it's turned off by default."
        noise_level = torch.tensor([0.0], dtype=torch.float32, device=device)
        noise_level = torch.cat([noise_level] * image.shape[0])
        inv_noise_level = (noise_level**2 + 1) ** (-0.5)

        image_cond = F.interpolate(image, scale_factor=2, mode="nearest") * inv_noise_level[:, None, None, None]
        image_cond = image_cond.to(text_embeddings.dtype)

        noise_level_embed = torch.cat(
            [
                torch.ones(text_pooler_out.shape[0], 64, dtype=text_pooler_out.dtype, device=device),
                torch.zeros(text_pooler_out.shape[0], 64, dtype=text_pooler_out.dtype, device=device),
            ],
            dim=1,
        )

        timestep_condition = torch.cat([noise_level_embed, text_pooler_out], dim=1)

        # 6. Prepare latent variables
        height, width = image.shape[2:]
        num_channels_latents = self.vae.config.latent_channels
        latents = self.prepare_latents(
            batch_size,
            num_channels_latents,
            height * 2,  # 2x upscale
            width * 2,
            text_embeddings.dtype,
            device,
            generator,
            latents,
        )

        # 7. Check that sizes of image and latents match
        num_channels_image = image.shape[1]
        if num_channels_latents + num_channels_image != self.unet.config.in_channels:
            raise ValueError(
                f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
                f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
                f" `num_channels_image`: {num_channels_image} "
                f" = {num_channels_latents+num_channels_image}. Please verify the config of"
                " `pipeline.unet` or your `image` input."
            )

        # 9. Denoising loop
        num_warmup_steps = 0

        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                sigma = self.scheduler.sigmas[i]
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                scaled_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                scaled_model_input = torch.cat([scaled_model_input, image_cond], dim=1)
                # preconditioning parameter based on  Karras et al. (2022) (table 1)
                timestep = torch.log(sigma) * 0.25

                noise_pred = self.unet(
                    scaled_model_input,
                    timestep,
                    encoder_hidden_states=text_embeddings,
                    timestep_cond=timestep_condition,
                ).sample

                # in original repo, the output contains a variance channel that's not used
                noise_pred = noise_pred[:, :-1]

                # apply preconditioning, based on table 1 in Karras et al. (2022)
                inv_sigma = 1 / (sigma**2 + 1)
                noise_pred = inv_sigma * latent_model_input + self.scheduler.scale_model_input(sigma, t) * noise_pred

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents).prev_sample

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

        if not output_type == "latent":
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
        else:
            image = latents

        image = self.image_processor.postprocess(image, output_type=output_type)

        self.maybe_free_model_hooks()

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)