Update app.py
Browse files
app.py
CHANGED
@@ -1 +1,188 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import subprocess
|
3 |
+
import time
|
4 |
+
from llama_cpp import Llama
|
5 |
+
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
|
6 |
+
from llama_cpp_agent.providers import LlamaCppPythonProvider
|
7 |
+
from llama_cpp_agent.chat_history import BasicChatHistory
|
8 |
+
from llama_cpp_agent.chat_history.messages import Roles
|
9 |
+
import gradio as gr
|
10 |
+
from huggingface_hub import hf_hub_download
|
11 |
+
|
12 |
+
llm = None
|
13 |
+
llm_model = None
|
14 |
+
|
15 |
+
# Download the new model
|
16 |
+
hf_hub_download(
|
17 |
+
repo_id="hugging-quants/Llama-3.2-1B-Instruct-Q4_K_M-GGUF",
|
18 |
+
filename="llama-3.2-1b-instruct-q4_k_m.gguf",
|
19 |
+
local_dir="./models"
|
20 |
+
)
|
21 |
+
|
22 |
+
def get_messages_formatter_type(model_name):
|
23 |
+
return MessagesFormatterType.LLAMA_3
|
24 |
+
|
25 |
+
def respond(
|
26 |
+
message,
|
27 |
+
history: list[tuple[str, str]],
|
28 |
+
model,
|
29 |
+
system_message,
|
30 |
+
max_tokens,
|
31 |
+
temperature,
|
32 |
+
top_p,
|
33 |
+
top_k,
|
34 |
+
repeat_penalty,
|
35 |
+
):
|
36 |
+
global llm
|
37 |
+
global llm_model
|
38 |
+
|
39 |
+
chat_template = get_messages_formatter_type(model)
|
40 |
+
|
41 |
+
if llm is None or llm_model != model:
|
42 |
+
llm = Llama(
|
43 |
+
model_path=f"models/{model}",
|
44 |
+
n_gpu_layers=0, # Adjust based on your GPU
|
45 |
+
n_batch=32398, # Adjust based on your RAM
|
46 |
+
n_ctx=512, # Adjust based on your RAM and desired context length
|
47 |
+
)
|
48 |
+
llm_model = model
|
49 |
+
|
50 |
+
provider = LlamaCppPythonProvider(llm)
|
51 |
+
|
52 |
+
agent = LlamaCppAgent(
|
53 |
+
provider,
|
54 |
+
system_prompt=f"{system_message}",
|
55 |
+
predefined_messages_formatter_type=chat_template,
|
56 |
+
debug_output=True
|
57 |
+
)
|
58 |
+
|
59 |
+
settings = provider.get_provider_default_settings()
|
60 |
+
settings.temperature = temperature
|
61 |
+
settings.top_k = top_k
|
62 |
+
settings.top_p = top_p
|
63 |
+
settings.max_tokens = max_tokens
|
64 |
+
settings.repeat_penalty = repeat_penalty
|
65 |
+
settings.stream = True
|
66 |
+
|
67 |
+
messages = BasicChatHistory()
|
68 |
+
|
69 |
+
for msn in history:
|
70 |
+
user = {
|
71 |
+
'role': Roles.user,
|
72 |
+
'content': msn[0]
|
73 |
+
}
|
74 |
+
assistant = {
|
75 |
+
'role': Roles.assistant,
|
76 |
+
'content': msn[1]
|
77 |
+
}
|
78 |
+
messages.add_message(user)
|
79 |
+
messages.add_message(assistant)
|
80 |
+
|
81 |
+
start_time = time.time()
|
82 |
+
token_count = 0
|
83 |
+
|
84 |
+
stream = agent.get_chat_response(
|
85 |
+
message,
|
86 |
+
llm_sampling_settings=settings,
|
87 |
+
chat_history=messages,
|
88 |
+
returns_streaming_generator=True,
|
89 |
+
print_output=False
|
90 |
+
)
|
91 |
+
|
92 |
+
outputs = ""
|
93 |
+
for output in stream:
|
94 |
+
outputs += output
|
95 |
+
token_count += len(output.split())
|
96 |
+
yield outputs
|
97 |
+
|
98 |
+
end_time = time.time()
|
99 |
+
latency = end_time - start_time
|
100 |
+
speed = token_count / (end_time - start_time)
|
101 |
+
print(f"Latency: {latency} seconds")
|
102 |
+
print(f"Speed: {speed} tokens/second")
|
103 |
+
|
104 |
+
description = """<p><center>
|
105 |
+
<a href="https://huggingface.co/hugging-quants/Llama-3.2-1B-Instruct-Q4_K_M-GGUF" target="_blank">[Meta Llama 3.2 (1B)]</a>
|
106 |
+
Meta Llama 3.2 (1B) is a multilingual large language model (LLM) optimized for conversational dialogue use cases, including agentic retrieval and summarization tasks. It outperforms many open-source and closed chat models on industry benchmarks, and is intended for commercial and research use in multiple languages.
|
107 |
+
</center></p>
|
108 |
+
"""
|
109 |
+
|
110 |
+
demo = gr.ChatInterface(
|
111 |
+
respond,
|
112 |
+
additional_inputs=[
|
113 |
+
gr.Dropdown([
|
114 |
+
"llama-3.2-1b-instruct-q4_k_m.gguf"
|
115 |
+
],
|
116 |
+
value="llama-3.2-1b-instruct-q4_k_m.gguf",
|
117 |
+
label="Model"
|
118 |
+
),
|
119 |
+
gr.TextArea(value="""You are Meta Llama 3.2 (1B), an advanced AI assistant created by Meta. Your capabilities include:
|
120 |
+
1. Complex reasoning and problem-solving
|
121 |
+
2. Multilingual understanding and generation
|
122 |
+
3. Creative and analytical writing
|
123 |
+
4. Code understanding and generation
|
124 |
+
5. Task decomposition and step-by-step guidance
|
125 |
+
6. Summarization and information extraction
|
126 |
+
Always strive for accuracy, clarity, and helpfulness in your responses. If you're unsure about something, express your uncertainty. Use the following format for your responses:
|
127 |
+
""", label="System message"),
|
128 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max tokens"),
|
129 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
130 |
+
gr.Slider(
|
131 |
+
minimum=0.1,
|
132 |
+
maximum=2.0,
|
133 |
+
value=0.9,
|
134 |
+
step=0.05,
|
135 |
+
label="Top-p",
|
136 |
+
),
|
137 |
+
gr.Slider(
|
138 |
+
minimum=0,
|
139 |
+
maximum=100,
|
140 |
+
value=1,
|
141 |
+
step=1,
|
142 |
+
label="Top-k",
|
143 |
+
),
|
144 |
+
gr.Slider(
|
145 |
+
minimum=0.0,
|
146 |
+
maximum=2.0,
|
147 |
+
value=1.1,
|
148 |
+
step=0.1,
|
149 |
+
label="Repetition penalty",
|
150 |
+
),
|
151 |
+
],
|
152 |
+
theme=gr.themes.Soft(primary_hue="violet", secondary_hue="violet", neutral_hue="gray",font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
|
153 |
+
body_background_fill_dark="#16141c",
|
154 |
+
block_background_fill_dark="#16141c",
|
155 |
+
block_border_width="1px",
|
156 |
+
block_title_background_fill_dark="#1e1c26",
|
157 |
+
input_background_fill_dark="#292733",
|
158 |
+
button_secondary_background_fill_dark="#24212b",
|
159 |
+
border_color_accent_dark="#343140",
|
160 |
+
border_color_primary_dark="#343140",
|
161 |
+
background_fill_secondary_dark="#16141c",
|
162 |
+
color_accent_soft_dark="transparent",
|
163 |
+
code_background_fill_dark="#292733",
|
164 |
+
),
|
165 |
+
title="Meta Llama 3.2 (1B)",
|
166 |
+
description=description,
|
167 |
+
chatbot=gr.Chatbot(
|
168 |
+
scale=1,
|
169 |
+
likeable=True,
|
170 |
+
show_copy_button=True
|
171 |
+
),
|
172 |
+
examples=[
|
173 |
+
["Hello! Can you introduce yourself?"],
|
174 |
+
["What's the capital of France?"],
|
175 |
+
["Can you explain the concept of photosynthesis?"],
|
176 |
+
["Write a short story about a robot learning to paint."],
|
177 |
+
["Explain the difference between machine learning and deep learning."],
|
178 |
+
["Summarize the key points of climate change and its global impact."],
|
179 |
+
["Explain quantum computing to a 10-year-old."],
|
180 |
+
["Design a step-by-step meal plan for someone trying to lose weight and build muscle."]
|
181 |
+
],
|
182 |
+
cache_examples=False,
|
183 |
+
autofocus=False,
|
184 |
+
concurrency_limit=None
|
185 |
+
)
|
186 |
+
|
187 |
+
if __name__ == "__main__":
|
188 |
+
demo.launch()
|