make ask drias asynchronous
Browse files
climateqa/engine/talk_to_data/main.py
CHANGED
@@ -37,7 +37,7 @@ def ask_llm_column_names(sql_query: str, llm) -> list[str]:
|
|
37 |
columns_list = ast.literal_eval(columns.strip("```python\n").strip())
|
38 |
return columns_list
|
39 |
|
40 |
-
def ask_drias(query: str, index_state: int = 0) -> tuple:
|
41 |
"""Main function to process a DRIAS query and return results.
|
42 |
|
43 |
This function orchestrates the DRIAS workflow, processing a user query to generate
|
@@ -60,7 +60,7 @@ def ask_drias(query: str, index_state: int = 0) -> tuple:
|
|
60 |
- table_list (list): List of table names used
|
61 |
- error (str): Error message if any
|
62 |
"""
|
63 |
-
final_state = drias_workflow(query)
|
64 |
sql_queries = []
|
65 |
result_dataframes = []
|
66 |
figures = []
|
|
|
37 |
columns_list = ast.literal_eval(columns.strip("```python\n").strip())
|
38 |
return columns_list
|
39 |
|
40 |
+
async def ask_drias(query: str, index_state: int = 0) -> tuple:
|
41 |
"""Main function to process a DRIAS query and return results.
|
42 |
|
43 |
This function orchestrates the DRIAS workflow, processing a user query to generate
|
|
|
60 |
- table_list (list): List of table names used
|
61 |
- error (str): Error message if any
|
62 |
"""
|
63 |
+
final_state = await drias_workflow(query)
|
64 |
sql_queries = []
|
65 |
result_dataframes = []
|
66 |
figures = []
|
climateqa/engine/talk_to_data/sql_query.py
CHANGED
@@ -1,8 +1,10 @@
|
|
|
|
|
|
1 |
from typing import TypedDict
|
2 |
import duckdb
|
3 |
import pandas as pd
|
4 |
|
5 |
-
def execute_sql_query(sql_query: str) -> pd.DataFrame:
|
6 |
"""Executes a SQL query on the DRIAS database and returns the results.
|
7 |
|
8 |
This function connects to the DuckDB database containing DRIAS climate data
|
@@ -18,11 +20,16 @@ def execute_sql_query(sql_query: str) -> pd.DataFrame:
|
|
18 |
Raises:
|
19 |
duckdb.Error: If there is an error executing the SQL query
|
20 |
"""
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
23 |
|
24 |
-
#
|
25 |
-
|
|
|
|
|
26 |
|
27 |
|
28 |
class IndicatorPerYearAtLocationQueryParams(TypedDict, total=False):
|
|
|
1 |
+
import asyncio
|
2 |
+
from concurrent.futures import ThreadPoolExecutor
|
3 |
from typing import TypedDict
|
4 |
import duckdb
|
5 |
import pandas as pd
|
6 |
|
7 |
+
async def execute_sql_query(sql_query: str) -> pd.DataFrame:
|
8 |
"""Executes a SQL query on the DRIAS database and returns the results.
|
9 |
|
10 |
This function connects to the DuckDB database containing DRIAS climate data
|
|
|
20 |
Raises:
|
21 |
duckdb.Error: If there is an error executing the SQL query
|
22 |
"""
|
23 |
+
def _execute_query():
|
24 |
+
# Execute the query
|
25 |
+
results = duckdb.sql(sql_query)
|
26 |
+
# return fetched data
|
27 |
+
return results.fetchdf()
|
28 |
|
29 |
+
# Run the query in a thread pool to avoid blocking
|
30 |
+
loop = asyncio.get_event_loop()
|
31 |
+
with ThreadPoolExecutor() as executor:
|
32 |
+
return await loop.run_in_executor(executor, _execute_query)
|
33 |
|
34 |
|
35 |
class IndicatorPerYearAtLocationQueryParams(TypedDict, total=False):
|
climateqa/engine/talk_to_data/utils.py
CHANGED
@@ -9,7 +9,7 @@ from climateqa.engine.talk_to_data.plot import PLOTS, Plot
|
|
9 |
from langchain_core.prompts import ChatPromptTemplate
|
10 |
|
11 |
|
12 |
-
def detect_location_with_openai(sentence):
|
13 |
"""
|
14 |
Detects locations in a sentence using OpenAI's API via LangChain.
|
15 |
"""
|
@@ -22,7 +22,7 @@ def detect_location_with_openai(sentence):
|
|
22 |
Sentence: "{sentence}"
|
23 |
"""
|
24 |
|
25 |
-
response = llm.
|
26 |
location_list = ast.literal_eval(response.content.strip("```python\n").strip())
|
27 |
if location_list:
|
28 |
return location_list[0]
|
@@ -40,7 +40,7 @@ class ArrayOutput(TypedDict):
|
|
40 |
"""
|
41 |
array: Annotated[str, "Syntactically valid python array."]
|
42 |
|
43 |
-
def detect_year_with_openai(sentence: str) -> str:
|
44 |
"""
|
45 |
Detects years in a sentence using OpenAI's API via LangChain.
|
46 |
"""
|
@@ -56,7 +56,7 @@ def detect_year_with_openai(sentence: str) -> str:
|
|
56 |
prompt = ChatPromptTemplate.from_template(prompt)
|
57 |
structured_llm = llm.with_structured_output(ArrayOutput)
|
58 |
chain = prompt | structured_llm
|
59 |
-
response: ArrayOutput = chain.
|
60 |
years_list = eval(response['array'])
|
61 |
if len(years_list) > 0:
|
62 |
return years_list[0]
|
@@ -146,7 +146,7 @@ def nearestNeighbourSQL(location: tuple, table: str) -> tuple[str, str]:
|
|
146 |
return results['latitude'].iloc[0], results['longitude'].iloc[0]
|
147 |
|
148 |
|
149 |
-
def detect_relevant_tables(user_question: str, plot: Plot, llm) -> list[str]:
|
150 |
"""Identifies relevant tables for a plot based on user input.
|
151 |
|
152 |
This function uses an LLM to analyze the user's question and the plot
|
@@ -183,7 +183,7 @@ def detect_relevant_tables(user_question: str, plot: Plot, llm) -> list[str]:
|
|
183 |
)
|
184 |
|
185 |
table_names = ast.literal_eval(
|
186 |
-
llm.
|
187 |
)
|
188 |
return table_names
|
189 |
|
@@ -197,7 +197,7 @@ def replace_coordonates(coords, query, coords_tables):
|
|
197 |
return query
|
198 |
|
199 |
|
200 |
-
def detect_relevant_plots(user_question: str, llm):
|
201 |
plots_description = ""
|
202 |
for plot in PLOTS:
|
203 |
plots_description += "Name: " + plot["name"]
|
@@ -223,7 +223,7 @@ def detect_relevant_plots(user_question: str, llm):
|
|
223 |
# )
|
224 |
|
225 |
plot_names = ast.literal_eval(
|
226 |
-
llm.
|
227 |
)
|
228 |
return plot_names
|
229 |
|
|
|
9 |
from langchain_core.prompts import ChatPromptTemplate
|
10 |
|
11 |
|
12 |
+
async def detect_location_with_openai(sentence):
|
13 |
"""
|
14 |
Detects locations in a sentence using OpenAI's API via LangChain.
|
15 |
"""
|
|
|
22 |
Sentence: "{sentence}"
|
23 |
"""
|
24 |
|
25 |
+
response = await llm.ainvoke(prompt)
|
26 |
location_list = ast.literal_eval(response.content.strip("```python\n").strip())
|
27 |
if location_list:
|
28 |
return location_list[0]
|
|
|
40 |
"""
|
41 |
array: Annotated[str, "Syntactically valid python array."]
|
42 |
|
43 |
+
async def detect_year_with_openai(sentence: str) -> str:
|
44 |
"""
|
45 |
Detects years in a sentence using OpenAI's API via LangChain.
|
46 |
"""
|
|
|
56 |
prompt = ChatPromptTemplate.from_template(prompt)
|
57 |
structured_llm = llm.with_structured_output(ArrayOutput)
|
58 |
chain = prompt | structured_llm
|
59 |
+
response: ArrayOutput = await chain.ainvoke({"sentence": sentence})
|
60 |
years_list = eval(response['array'])
|
61 |
if len(years_list) > 0:
|
62 |
return years_list[0]
|
|
|
146 |
return results['latitude'].iloc[0], results['longitude'].iloc[0]
|
147 |
|
148 |
|
149 |
+
async def detect_relevant_tables(user_question: str, plot: Plot, llm) -> list[str]:
|
150 |
"""Identifies relevant tables for a plot based on user input.
|
151 |
|
152 |
This function uses an LLM to analyze the user's question and the plot
|
|
|
183 |
)
|
184 |
|
185 |
table_names = ast.literal_eval(
|
186 |
+
(await llm.ainvoke(prompt)).content.strip("```python\n").strip()
|
187 |
)
|
188 |
return table_names
|
189 |
|
|
|
197 |
return query
|
198 |
|
199 |
|
200 |
+
async def detect_relevant_plots(user_question: str, llm):
|
201 |
plots_description = ""
|
202 |
for plot in PLOTS:
|
203 |
plots_description += "Name: " + plot["name"]
|
|
|
223 |
# )
|
224 |
|
225 |
plot_names = ast.literal_eval(
|
226 |
+
(await llm.ainvoke(prompt)).content.strip("```python\n").strip()
|
227 |
)
|
228 |
return plot_names
|
229 |
|
climateqa/engine/talk_to_data/workflow.py
CHANGED
@@ -61,7 +61,7 @@ class State(TypedDict):
|
|
61 |
plot_states: dict[str, PlotState]
|
62 |
error: NotRequired[str]
|
63 |
|
64 |
-
def drias_workflow(user_input: str) -> State:
|
65 |
"""Performs the complete workflow of Talk To Drias : from user input to sql queries, dataframes and figures generated
|
66 |
|
67 |
Args:
|
@@ -78,7 +78,7 @@ def drias_workflow(user_input: str) -> State:
|
|
78 |
|
79 |
llm = get_llm(provider="openai")
|
80 |
|
81 |
-
plots = find_relevant_plots(state, llm)
|
82 |
state['plots'] = plots
|
83 |
|
84 |
if not state['plots']:
|
@@ -102,7 +102,7 @@ def drias_workflow(user_input: str) -> State:
|
|
102 |
|
103 |
plot_state['plot_name'] = plot_name
|
104 |
|
105 |
-
relevant_tables = find_relevant_tables_per_plot(state, plot, llm)
|
106 |
if len(relevant_tables) > 0 :
|
107 |
have_relevant_table = True
|
108 |
|
@@ -110,7 +110,7 @@ def drias_workflow(user_input: str) -> State:
|
|
110 |
|
111 |
params = {}
|
112 |
for param_name in plot['params']:
|
113 |
-
param = find_param(state, param_name, relevant_tables[0])
|
114 |
if param:
|
115 |
params.update(param)
|
116 |
|
@@ -135,7 +135,7 @@ def drias_workflow(user_input: str) -> State:
|
|
135 |
have_sql_query = True
|
136 |
|
137 |
table_state['sql_query'] = sql_query
|
138 |
-
df = execute_sql_query(sql_query)
|
139 |
|
140 |
if len(df) > 0:
|
141 |
have_dataframe = True
|
@@ -154,22 +154,19 @@ def drias_workflow(user_input: str) -> State:
|
|
154 |
elif not have_dataframe:
|
155 |
state['error'] = "There is no data in our table that can answer to your question"
|
156 |
|
157 |
-
|
158 |
return state
|
159 |
|
160 |
-
|
161 |
-
def find_relevant_plots(state: State, llm) -> list[str]:
|
162 |
print("---- Find relevant plots ----")
|
163 |
-
relevant_plots = detect_relevant_plots(state['user_input'], llm)
|
164 |
return relevant_plots
|
165 |
|
166 |
-
def find_relevant_tables_per_plot(state: State, plot: Plot, llm) -> list[str]:
|
167 |
print(f"---- Find relevant tables for {plot['name']} ----")
|
168 |
-
relevant_tables = detect_relevant_tables(state['user_input'], plot, llm)
|
169 |
return relevant_tables
|
170 |
|
171 |
-
|
172 |
-
def find_param(state: State, param_name:str, table: str) -> dict[str, Any] | None:
|
173 |
"""Perform the good method to retrieve the desired parameter
|
174 |
|
175 |
Args:
|
@@ -181,25 +178,21 @@ def find_param(state: State, param_name:str, table: str) -> dict[str, Any] | Non
|
|
181 |
dict[str, Any] | None:
|
182 |
"""
|
183 |
if param_name == 'location':
|
184 |
-
location = find_location(state['user_input'], table)
|
185 |
return location
|
186 |
-
# if param_name == 'indicator_column':
|
187 |
-
# indicator_column = find_indicator_column(table)
|
188 |
-
# return {'indicator_column': indicator_column}
|
189 |
if param_name == 'year':
|
190 |
-
year = find_year(state['user_input'])
|
191 |
return {'year': year}
|
192 |
return None
|
193 |
|
194 |
-
|
195 |
class Location(TypedDict):
|
196 |
location: str
|
197 |
latitude: NotRequired[str]
|
198 |
longitude: NotRequired[str]
|
199 |
|
200 |
-
def find_location(user_input: str, table: str) -> Location:
|
201 |
print(f"---- Find location in table {table} ----")
|
202 |
-
location = detect_location_with_openai(user_input)
|
203 |
output: Location = {'location' : location}
|
204 |
if location:
|
205 |
coords = loc2coords(location)
|
@@ -210,7 +203,7 @@ def find_location(user_input: str, table: str) -> Location:
|
|
210 |
})
|
211 |
return output
|
212 |
|
213 |
-
def find_year(user_input: str) -> str:
|
214 |
"""Extracts year information from user input using LLM.
|
215 |
|
216 |
This function uses an LLM to identify and extract year information from the
|
@@ -223,7 +216,7 @@ def find_year(user_input: str) -> str:
|
|
223 |
str: The extracted year, or empty string if no year found
|
224 |
"""
|
225 |
print(f"---- Find year ---")
|
226 |
-
year = detect_year_with_openai(user_input)
|
227 |
return year
|
228 |
|
229 |
def find_indicator_column(table: str) -> str:
|
|
|
61 |
plot_states: dict[str, PlotState]
|
62 |
error: NotRequired[str]
|
63 |
|
64 |
+
async def drias_workflow(user_input: str) -> State:
|
65 |
"""Performs the complete workflow of Talk To Drias : from user input to sql queries, dataframes and figures generated
|
66 |
|
67 |
Args:
|
|
|
78 |
|
79 |
llm = get_llm(provider="openai")
|
80 |
|
81 |
+
plots = await find_relevant_plots(state, llm)
|
82 |
state['plots'] = plots
|
83 |
|
84 |
if not state['plots']:
|
|
|
102 |
|
103 |
plot_state['plot_name'] = plot_name
|
104 |
|
105 |
+
relevant_tables = await find_relevant_tables_per_plot(state, plot, llm)
|
106 |
if len(relevant_tables) > 0 :
|
107 |
have_relevant_table = True
|
108 |
|
|
|
110 |
|
111 |
params = {}
|
112 |
for param_name in plot['params']:
|
113 |
+
param = await find_param(state, param_name, relevant_tables[0])
|
114 |
if param:
|
115 |
params.update(param)
|
116 |
|
|
|
135 |
have_sql_query = True
|
136 |
|
137 |
table_state['sql_query'] = sql_query
|
138 |
+
df = await execute_sql_query(sql_query)
|
139 |
|
140 |
if len(df) > 0:
|
141 |
have_dataframe = True
|
|
|
154 |
elif not have_dataframe:
|
155 |
state['error'] = "There is no data in our table that can answer to your question"
|
156 |
|
|
|
157 |
return state
|
158 |
|
159 |
+
async def find_relevant_plots(state: State, llm) -> list[str]:
|
|
|
160 |
print("---- Find relevant plots ----")
|
161 |
+
relevant_plots = await detect_relevant_plots(state['user_input'], llm)
|
162 |
return relevant_plots
|
163 |
|
164 |
+
async def find_relevant_tables_per_plot(state: State, plot: Plot, llm) -> list[str]:
|
165 |
print(f"---- Find relevant tables for {plot['name']} ----")
|
166 |
+
relevant_tables = await detect_relevant_tables(state['user_input'], plot, llm)
|
167 |
return relevant_tables
|
168 |
|
169 |
+
async def find_param(state: State, param_name:str, table: str) -> dict[str, Any] | None:
|
|
|
170 |
"""Perform the good method to retrieve the desired parameter
|
171 |
|
172 |
Args:
|
|
|
178 |
dict[str, Any] | None:
|
179 |
"""
|
180 |
if param_name == 'location':
|
181 |
+
location = await find_location(state['user_input'], table)
|
182 |
return location
|
|
|
|
|
|
|
183 |
if param_name == 'year':
|
184 |
+
year = await find_year(state['user_input'])
|
185 |
return {'year': year}
|
186 |
return None
|
187 |
|
|
|
188 |
class Location(TypedDict):
|
189 |
location: str
|
190 |
latitude: NotRequired[str]
|
191 |
longitude: NotRequired[str]
|
192 |
|
193 |
+
async def find_location(user_input: str, table: str) -> Location:
|
194 |
print(f"---- Find location in table {table} ----")
|
195 |
+
location = await detect_location_with_openai(user_input)
|
196 |
output: Location = {'location' : location}
|
197 |
if location:
|
198 |
coords = loc2coords(location)
|
|
|
203 |
})
|
204 |
return output
|
205 |
|
206 |
+
async def find_year(user_input: str) -> str:
|
207 |
"""Extracts year information from user input using LLM.
|
208 |
|
209 |
This function uses an LLM to identify and extract year information from the
|
|
|
216 |
str: The extracted year, or empty string if no year found
|
217 |
"""
|
218 |
print(f"---- Find year ---")
|
219 |
+
year = await detect_year_with_openai(user_input)
|
220 |
return year
|
221 |
|
222 |
def find_indicator_column(table: str) -> str:
|
front/tabs/tab_drias.py
CHANGED
@@ -4,8 +4,8 @@ from climateqa.engine.talk_to_data.main import ask_drias
|
|
4 |
from climateqa.engine.talk_to_data.config import DRIAS_MODELS, DRIAS_UI_TEXT
|
5 |
|
6 |
|
7 |
-
def ask_drias_query(query: str, index_state: int):
|
8 |
-
return ask_drias(query, index_state)
|
9 |
|
10 |
|
11 |
def show_results(sql_queries_state, dataframes_state, plots_state):
|
|
|
4 |
from climateqa.engine.talk_to_data.config import DRIAS_MODELS, DRIAS_UI_TEXT
|
5 |
|
6 |
|
7 |
+
async def ask_drias_query(query: str, index_state: int):
|
8 |
+
return await ask_drias(query, index_state)
|
9 |
|
10 |
|
11 |
def show_results(sql_queries_state, dataframes_state, plots_state):
|