armanddemasson commited on
Commit
bdeb1e5
·
1 Parent(s): 30f401b

feat: added plot informations for each plot (DRIAS & IPCC)

Browse files
climateqa/engine/talk_to_data/drias/plot_informations.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from climateqa.engine.talk_to_data.drias.config import DRIAS_INDICATOR_TO_UNIT
2
+
3
+ def indicator_evolution_informations(
4
+ indicator: str,
5
+ params: dict[str, str]
6
+ ) -> str:
7
+ unit = DRIAS_INDICATOR_TO_UNIT[indicator]
8
+ if "location" not in params:
9
+ raise ValueError('"location" must be provided in params')
10
+ location = params["location"]
11
+ return f"""
12
+ This plot shows how the climate indicator **{indicator}** evolves over time in **{location}**.
13
+
14
+ It combines both historical observations and future projections according to the climate scenario RCP8.5.
15
+
16
+ The x-axis represents the years, and the y-axis shows the value of the indicator ({unit}).
17
+
18
+ A 10-year rolling average curve is displayed to give a better idea of the overall trend.
19
+
20
+ **Data source:**
21
+ - The data come from the DRIAS TRACC data. The data were initially extracted from [the DRIAS website](https://www.drias-climat.fr/drias_prod/accueil/okapiWebDrias/index.jsp?iddrias=climat) and then preprocessed to a tabular format and uploaded as parquet in this [Hugging Face dataset](https://huggingface.co/datasets/timeki/drias_db).
22
+ - For each year and climate model, the value of {indicator} in {location} is collected, to build the time series.
23
+ - The coordinates used for {location} correspond to the closest available point in the DRIAS database, which uses a regular grid with a spatial resolution of 8 km.
24
+ - The indicator values shown are those for the selected climate model.
25
+ - If ALL climate model is selected, the average value of the indicator between all the climate models is used.
26
+ """
27
+
28
+ def indicator_number_of_days_per_year_informations(
29
+ indicator: str,
30
+ params: dict[str, str]
31
+ ) -> str:
32
+ unit = DRIAS_INDICATOR_TO_UNIT[indicator]
33
+ if "location" not in params:
34
+ raise ValueError('"location" must be provided in params')
35
+ location = params["location"]
36
+ return f"""
37
+ This plot displays a bar chart showing the yearly frequency of the climate indicator **{indicator}** in **{location}**.
38
+
39
+ The x-axis represents the years, and the y-axis shows the frequency of {indicator} ({unit}) per year.
40
+
41
+ **Data source:**
42
+ - The data come from the DRIAS TRACC data. The data were initially extracted from [the DRIAS website](https://www.drias-climat.fr/drias_prod/accueil/okapiWebDrias/index.jsp?iddrias=climat) and then preprocessed to a tabular format and uploaded as parquet in this [Hugging Face dataset](https://huggingface.co/datasets/timeki/drias_db).
43
+ - For each year and climate model, the value of {indicator} in {location} is collected, to build the time series.
44
+ - The coordinates used for {location} correspond to the closest available point in the DRIAS database, which uses a regular grid with a spatial resolution of 8 km.
45
+ - The indicator values shown are those for the selected climate model.
46
+ - If ALL climate model is selected, the average value of the indicator between all the climate models is used.
47
+ """
48
+
49
+ def distribution_of_indicator_for_given_year_informations(
50
+ indicator: str,
51
+ params: dict[str, str]
52
+ ) -> str:
53
+ unit = DRIAS_INDICATOR_TO_UNIT[indicator]
54
+ year = params["year"]
55
+ if year is None:
56
+ year = 2030
57
+ return f"""
58
+ This plot shows a histogram of the distribution of the climate indicator **{indicator}** across all locations for the year **{year}**.
59
+
60
+ It allows you to visualize how the values of {indicator} ({unit}) are spread for a given year.
61
+
62
+ **Data source:**
63
+ - The data come from the DRIAS TRACC data. The data were initially extracted from [the DRIAS website](https://www.drias-climat.fr/drias_prod/accueil/okapiWebDrias/index.jsp?iddrias=climat) and then preprocessed to a tabular format and uploaded as parquet in this [Hugging Face dataset](https://huggingface.co/datasets/timeki/drias_db).
64
+ - For each grid point in the dataset and climate model, the value of {indicator} for the year {year} is extracted.
65
+ - The indicator values shown are those for the selected climate model.
66
+ - If ALL climate model is selected, the average value of the indicator between all the climate models is used.
67
+ """
68
+
69
+ def map_of_france_of_indicator_for_given_year_informations(
70
+ indicator: str,
71
+ params: dict[str, str]
72
+ ) -> str:
73
+ unit = DRIAS_INDICATOR_TO_UNIT[indicator]
74
+ year = params["year"]
75
+ if year is None:
76
+ year = 2030
77
+ return f"""
78
+ This plot displays a choropleth map showing the spatial distribution of **{indicator}** across all regions of France for the year **{year}**.
79
+
80
+ Each region is colored according to the value of the indicator ({unit}), allowing you to visually compare how {indicator} varies geographically within France for the selected year and climate model.
81
+
82
+ **Data source:**
83
+ - The data come from the DRIAS TRACC data. The data were initially extracted from [the DRIAS website](https://www.drias-climat.fr/drias_prod/accueil/okapiWebDrias/index.jsp?iddrias=climat) and then preprocessed to a tabular format and uploaded as parquet in this [Hugging Face dataset](https://huggingface.co/datasets/timeki/drias_db).
84
+ - For each region of France, the value of {indicator} in {year} and for the selected climate model is extracted and mapped to its geographic coordinates.
85
+ - The regions correspond to 8 km squares centered on the grid points of the DRIAS dataset.
86
+ - The indicator values shown are those for the selected climate model.
87
+ - If ALL climate model is selected, the average value of the indicator between all the climate models is used.
88
+ """
climateqa/engine/talk_to_data/drias/plots.py CHANGED
@@ -5,6 +5,7 @@ from typing import Callable
5
  import pandas as pd
6
  from plotly.graph_objects import Figure
7
  import plotly.graph_objects as go
 
8
  from climateqa.engine.talk_to_data.objects.plot import Plot
9
  from climateqa.engine.talk_to_data.drias.queries import (
10
  indicator_for_given_year_query,
@@ -162,6 +163,7 @@ indicator_evolution_at_location: Plot = {
162
  "params": ["indicator_column", "location", "model"],
163
  "plot_function": plot_indicator_evolution_at_location,
164
  "sql_query": indicator_per_year_at_location_query,
 
165
  'short_name': 'Indicator Evolution'
166
  }
167
 
@@ -246,6 +248,7 @@ indicator_number_of_days_per_year_at_location: Plot = {
246
  "params": ["indicator_column", "location", "model"],
247
  "plot_function": plot_indicator_number_of_days_per_year_at_location,
248
  "sql_query": indicator_per_year_at_location_query,
 
249
  "short_name": "Indicator Yearly Frequency",
250
  }
251
 
@@ -331,6 +334,7 @@ distribution_of_indicator_for_given_year: Plot = {
331
  "params": ["indicator_column", "model", "year"],
332
  "plot_function": plot_distribution_of_indicator_for_given_year,
333
  "sql_query": indicator_for_given_year_query,
 
334
  'short_name': 'Indicator Distribution'
335
  }
336
 
@@ -418,6 +422,7 @@ map_of_france_of_indicator_for_given_year: Plot = {
418
  "params": ["indicator_column", "year", "model"],
419
  "plot_function": plot_map_of_france_of_indicator_for_given_year,
420
  "sql_query": indicator_for_given_year_query,
 
421
  'short_name': 'Map of France'
422
  }
423
 
 
5
  import pandas as pd
6
  from plotly.graph_objects import Figure
7
  import plotly.graph_objects as go
8
+ from climateqa.engine.talk_to_data.drias.plot_informations import distribution_of_indicator_for_given_year_informations, indicator_evolution_informations, indicator_number_of_days_per_year_informations, map_of_france_of_indicator_for_given_year_informations
9
  from climateqa.engine.talk_to_data.objects.plot import Plot
10
  from climateqa.engine.talk_to_data.drias.queries import (
11
  indicator_for_given_year_query,
 
163
  "params": ["indicator_column", "location", "model"],
164
  "plot_function": plot_indicator_evolution_at_location,
165
  "sql_query": indicator_per_year_at_location_query,
166
+ "plot_information": indicator_evolution_informations,
167
  'short_name': 'Indicator Evolution'
168
  }
169
 
 
248
  "params": ["indicator_column", "location", "model"],
249
  "plot_function": plot_indicator_number_of_days_per_year_at_location,
250
  "sql_query": indicator_per_year_at_location_query,
251
+ "plot_information": indicator_number_of_days_per_year_informations,
252
  "short_name": "Indicator Yearly Frequency",
253
  }
254
 
 
334
  "params": ["indicator_column", "model", "year"],
335
  "plot_function": plot_distribution_of_indicator_for_given_year,
336
  "sql_query": indicator_for_given_year_query,
337
+ "plot_information": distribution_of_indicator_for_given_year_informations,
338
  'short_name': 'Indicator Distribution'
339
  }
340
 
 
422
  "params": ["indicator_column", "year", "model"],
423
  "plot_function": plot_map_of_france_of_indicator_for_given_year,
424
  "sql_query": indicator_for_given_year_query,
425
+ "plot_information": map_of_france_of_indicator_for_given_year_informations,
426
  'short_name': 'Map of France'
427
  }
428
 
climateqa/engine/talk_to_data/ipcc/plot_informations.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from climateqa.engine.talk_to_data.ipcc.config import IPCC_INDICATOR_TO_UNIT
2
+
3
+ def indicator_evolution_informations(
4
+ indicator: str,
5
+ params: dict[str,str],
6
+ ) -> str:
7
+ if "location" not in params:
8
+ raise ValueError('"location" must be provided in params')
9
+ location = params["location"]
10
+
11
+ unit = IPCC_INDICATOR_TO_UNIT[indicator]
12
+ return f"""
13
+ This plot shows how the climate indicator **{indicator}** evolves over time in **{location}**.
14
+
15
+ It combines both historical (from 1950 to 2015) observations and future (from 2016 to 2100) projections for the different SSP climate scenarios (SSP126, SSP245, SSP370 and SSP585).
16
+
17
+ The x-axis represents the years (from 1950 to 2100), and the y-axis shows the value of the {indicator} ({unit}).
18
+
19
+ Each line corresponds to a different scenario, allowing you to compare how {indicator} might change under various future conditions.
20
+
21
+ **Data source:**
22
+ - The data comes from the CMIP6 IPCC ATLAS data. The data were initially extracted from [this referenced website](https://digital.csic.es/handle/10261/332744) and then preprocessed to a tabular format and uploaded as parquet in this [Hugging Face dataset](https://huggingface.co/datasets/Ekimetrics/ipcc-atlas).
23
+ - The underlying data is retrieved by aggregating yearly values of {indicator} for the selected location, across all available scenarios. This means the system collects, for each year, the value of {indicator} in {location}, both for the historical period and for each scenario, to build the time series.
24
+ - The coordinates used for {location} correspond to the closest available point in the IPCC database, which uses a regular grid with a spatial resolution of 1 degree.
25
+ """
26
+
27
+ def choropleth_map_informations(
28
+ indicator: str,
29
+ params: dict[str, str],
30
+ ) -> str:
31
+ unit = IPCC_INDICATOR_TO_UNIT[indicator]
32
+ if "location" not in params:
33
+ raise ValueError('"location" must be provided in params')
34
+ location = params["location"]
35
+ country_name = params["country_name"]
36
+ year = params["year"]
37
+ if year is None:
38
+ year = 2050
39
+
40
+ return f"""
41
+ This plot displays a choropleth map showing the spatial distribution of **{indicator}** across all regions of **{location}** country ({country_name}) for the year **{year}** and the chosen scenario.
42
+
43
+ Each region is colored according to the value of the indicator ({unit}), allowing you to visually compare how {indicator} varies geographically within the country for the selected year and scenario.
44
+
45
+ **Data source:**
46
+ - The data come from the CMIP6 IPCC ATLAS data. The data were initially extracted from [this referenced website](https://digital.csic.es/handle/10261/332744) and then preprocessed to a tabular format and uploaded as parquet in this [Hugging Face dataset](https://huggingface.co/datasets/Ekimetrics/ipcc-atlas).
47
+ - For each region of {location} country ({country_name}), the value of {indicator} in {year} and for the selected scenario is extracted and mapped to its geographic coordinates.
48
+ - The regions correspond to 1-degree squares centered on the grid points of the IPCC dataset.
49
+ - The coordinates used for each region are those of the closest available grid point in the IPCC database, which uses a regular grid with a spatial resolution of 1 degree.
50
+ """
climateqa/engine/talk_to_data/ipcc/plots.py CHANGED
@@ -5,6 +5,7 @@ import pandas as pd
5
  import geojson
6
 
7
  from climateqa.engine.talk_to_data.ipcc.config import IPCC_INDICATOR_TO_COLORSCALE, IPCC_INDICATOR_TO_UNIT, IPCC_SCENARIO
 
8
  from climateqa.engine.talk_to_data.ipcc.queries import indicator_for_given_year_query, indicator_per_year_at_location_query
9
  from climateqa.engine.talk_to_data.objects.plot import Plot
10
 
@@ -97,6 +98,7 @@ indicator_evolution_at_location_historical_and_projections: Plot = {
97
  "params": ["indicator_column", "location"],
98
  "plot_function": plot_indicator_evolution_at_location_historical_and_projections,
99
  "sql_query": indicator_per_year_at_location_query,
 
100
  "short_name": "Indicator Evolution"
101
  }
102
 
@@ -177,7 +179,8 @@ choropleth_map_of_country_indicator_for_specific_year: Plot = {
177
  "params": ["indicator_column", "year", "location"],
178
  "plot_function": plot_choropleth_map_of_country_indicator_for_specific_year,
179
  "sql_query": indicator_for_given_year_query,
180
- "short_name": "Choropleth Map"
 
181
  }
182
 
183
  IPCC_PLOTS = [
 
5
  import geojson
6
 
7
  from climateqa.engine.talk_to_data.ipcc.config import IPCC_INDICATOR_TO_COLORSCALE, IPCC_INDICATOR_TO_UNIT, IPCC_SCENARIO
8
+ from climateqa.engine.talk_to_data.ipcc.plot_informations import choropleth_map_informations, indicator_evolution_informations
9
  from climateqa.engine.talk_to_data.ipcc.queries import indicator_for_given_year_query, indicator_per_year_at_location_query
10
  from climateqa.engine.talk_to_data.objects.plot import Plot
11
 
 
98
  "params": ["indicator_column", "location"],
99
  "plot_function": plot_indicator_evolution_at_location_historical_and_projections,
100
  "sql_query": indicator_per_year_at_location_query,
101
+ "plot_information": indicator_evolution_informations,
102
  "short_name": "Indicator Evolution"
103
  }
104
 
 
179
  "params": ["indicator_column", "year", "location"],
180
  "plot_function": plot_choropleth_map_of_country_indicator_for_specific_year,
181
  "sql_query": indicator_for_given_year_query,
182
+ "plot_information": choropleth_map_informations,
183
+ "short_name": "Choropleth Map",
184
  }
185
 
186
  IPCC_PLOTS = [
climateqa/engine/talk_to_data/main.py CHANGED
@@ -5,7 +5,6 @@ from climateqa.engine.llm import get_llm
5
  from climateqa.engine.talk_to_data.workflow.ipcc import ipcc_workflow
6
  from climateqa.logging import log_drias_interaction_to_huggingface
7
  from climateqa.logging import log_drias_interaction_to_huggingface
8
- import ast
9
 
10
  async def ask_drias(query: str, index_state: int = 0, user_id: str | None = None) -> tuple:
11
  """Main function to process a DRIAS query and return results.
@@ -35,12 +34,16 @@ async def ask_drias(query: str, index_state: int = 0, user_id: str | None = None
35
  result_dataframes = []
36
  figures = []
37
  plot_title_list = []
38
-
39
 
40
  for output_title, output in final_state['outputs'].items():
41
  if output['status'] == 'OK':
42
  if output['table'] is not None:
43
  plot_title_list.append(output_title)
 
 
 
 
44
  if output['sql_query'] is not None:
45
  sql_queries.append(output['sql_query'])
46
 
@@ -50,17 +53,19 @@ async def ask_drias(query: str, index_state: int = 0, user_id: str | None = None
50
  figures.append(output['figure'])
51
 
52
  if "error" in final_state and final_state["error"] != "":
53
- # No Sql query, no dataframe, no figure, empty sql queries list, empty result dataframes list, empty figures list, index state = 0, empty table list, error message
54
- return None, None, None, [], [], [], 0, [], final_state["error"]
55
 
56
  sql_query = sql_queries[index_state]
57
  dataframe = result_dataframes[index_state]
58
- figure = figures[index_state](dataframe)
 
59
 
60
 
61
  log_drias_interaction_to_huggingface(query, sql_query, user_id)
62
 
63
- return sql_query, dataframe, figure, sql_queries, result_dataframes, figures, index_state, plot_title_list, ""
 
64
 
65
 
66
  async def ask_ipcc(query: str, index_state: int = 0, user_id: str | None = None) -> tuple:
@@ -91,12 +96,16 @@ async def ask_ipcc(query: str, index_state: int = 0, user_id: str | None = None)
91
  result_dataframes = []
92
  figures = []
93
  plot_title_list = []
94
-
95
 
96
  for output_title, output in final_state['outputs'].items():
97
  if output['status'] == 'OK':
98
  if output['table'] is not None:
99
  plot_title_list.append(output_title)
 
 
 
 
100
  if output['sql_query'] is not None:
101
  sql_queries.append(output['sql_query'])
102
 
@@ -106,13 +115,14 @@ async def ask_ipcc(query: str, index_state: int = 0, user_id: str | None = None)
106
  figures.append(output['figure'])
107
 
108
  if "error" in final_state and final_state["error"] != "":
109
- # No Sql query, no dataframe, no figure, empty sql queries list, empty result dataframes list, empty figures list, index state = 0, empty table list, error message
110
- return None, None, None, [], [], [], 0, [], final_state["error"]
111
 
112
  sql_query = sql_queries[index_state]
113
  dataframe = result_dataframes[index_state]
114
- figure = figures[index_state](dataframe)
 
115
 
116
  log_drias_interaction_to_huggingface(query, sql_query, user_id)
117
 
118
- return sql_query, dataframe, figure, sql_queries, result_dataframes, figures, index_state, plot_title_list, ""
 
5
  from climateqa.engine.talk_to_data.workflow.ipcc import ipcc_workflow
6
  from climateqa.logging import log_drias_interaction_to_huggingface
7
  from climateqa.logging import log_drias_interaction_to_huggingface
 
8
 
9
  async def ask_drias(query: str, index_state: int = 0, user_id: str | None = None) -> tuple:
10
  """Main function to process a DRIAS query and return results.
 
34
  result_dataframes = []
35
  figures = []
36
  plot_title_list = []
37
+ plot_informations = []
38
 
39
  for output_title, output in final_state['outputs'].items():
40
  if output['status'] == 'OK':
41
  if output['table'] is not None:
42
  plot_title_list.append(output_title)
43
+
44
+ if output['plot_information'] is not None:
45
+ plot_informations.append(output['plot_information'])
46
+
47
  if output['sql_query'] is not None:
48
  sql_queries.append(output['sql_query'])
49
 
 
53
  figures.append(output['figure'])
54
 
55
  if "error" in final_state and final_state["error"] != "":
56
+ # No Sql query, no dataframe, no figure, no plot information, empty sql queries list, empty result dataframes list, empty figures list, empty plot information list, index state = 0, empty table list, error message
57
+ return None, None, None, None, [], [], [], 0, [], final_state["error"]
58
 
59
  sql_query = sql_queries[index_state]
60
  dataframe = result_dataframes[index_state]
61
+ figure = figures[index_state](dataframe)
62
+ plot_information = plot_informations[index_state]
63
 
64
 
65
  log_drias_interaction_to_huggingface(query, sql_query, user_id)
66
 
67
+ return sql_query, dataframe, figure, plot_information, sql_queries, result_dataframes, figures, plot_informations, index_state, plot_title_list, ""
68
+
69
 
70
 
71
  async def ask_ipcc(query: str, index_state: int = 0, user_id: str | None = None) -> tuple:
 
96
  result_dataframes = []
97
  figures = []
98
  plot_title_list = []
99
+ plot_informations = []
100
 
101
  for output_title, output in final_state['outputs'].items():
102
  if output['status'] == 'OK':
103
  if output['table'] is not None:
104
  plot_title_list.append(output_title)
105
+
106
+ if output['plot_information'] is not None:
107
+ plot_informations.append(output['plot_information'])
108
+
109
  if output['sql_query'] is not None:
110
  sql_queries.append(output['sql_query'])
111
 
 
115
  figures.append(output['figure'])
116
 
117
  if "error" in final_state and final_state["error"] != "":
118
+ # No Sql query, no dataframe, no figure, no plot information, empty sql queries list, empty result dataframes list, empty figures list, empty plot information list, index state = 0, empty table list, error message
119
+ return None, None, None, None, [], [], [], 0, [], final_state["error"]
120
 
121
  sql_query = sql_queries[index_state]
122
  dataframe = result_dataframes[index_state]
123
+ figure = figures[index_state](dataframe)
124
+ plot_information = plot_informations[index_state]
125
 
126
  log_drias_interaction_to_huggingface(query, sql_query, user_id)
127
 
128
+ return sql_query, dataframe, figure, plot_information, sql_queries, result_dataframes, figures, plot_informations, index_state, plot_title_list, ""
climateqa/engine/talk_to_data/objects/plot.py CHANGED
@@ -19,4 +19,5 @@ class Plot(TypedDict):
19
  params: list[str]
20
  plot_function: Callable[..., Callable[..., Figure]]
21
  sql_query: Callable[..., str]
 
22
  short_name: str
 
19
  params: list[str]
20
  plot_function: Callable[..., Callable[..., Figure]]
21
  sql_query: Callable[..., str]
22
+ plot_information: Callable[..., str]
23
  short_name: str
climateqa/engine/talk_to_data/objects/states.py CHANGED
@@ -10,6 +10,7 @@ class TTDOutput(TypedDict):
10
  sql_query: Optional[str]
11
  dataframe: Optional[pd.DataFrame]
12
  figure: Optional[Callable[..., Figure]]
 
13
  class State(TypedDict):
14
  user_input: str
15
  plots: list[str]
 
10
  sql_query: Optional[str]
11
  dataframe: Optional[pd.DataFrame]
12
  figure: Optional[Callable[..., Figure]]
13
+ plot_information: Optional[str]
14
  class State(TypedDict):
15
  user_input: str
16
  plots: list[str]
climateqa/engine/talk_to_data/workflow/drias.py CHANGED
@@ -37,7 +37,8 @@ async def process_output(
37
  'table': table,
38
  'sql_query': None,
39
  'dataframe': None,
40
- 'figure': None
 
41
  }
42
  errors = {
43
  'have_sql_query': False,
@@ -55,6 +56,8 @@ async def process_output(
55
  results['status'] = 'ERROR'
56
  return output_title, results, errors
57
 
 
 
58
  results['sql_query'] = sql_query
59
  errors['have_sql_query'] = True
60
 
@@ -142,6 +145,7 @@ async def drias_workflow(user_input: str) -> State:
142
  outputs[output_title]['sql_query'] = task_results['sql_query']
143
  outputs[output_title]['dataframe'] = task_results['dataframe']
144
  outputs[output_title]['figure'] = task_results['figure']
 
145
  outputs[output_title]['status'] = task_results['status']
146
  errors['have_sql_query'] |= task_errors['have_sql_query']
147
  errors['have_dataframe'] |= task_errors['have_dataframe']
 
37
  'table': table,
38
  'sql_query': None,
39
  'dataframe': None,
40
+ 'figure': None,
41
+ 'plot_information': None
42
  }
43
  errors = {
44
  'have_sql_query': False,
 
56
  results['status'] = 'ERROR'
57
  return output_title, results, errors
58
 
59
+ results['plot_information'] = plot['plot_information'](table, params)
60
+
61
  results['sql_query'] = sql_query
62
  errors['have_sql_query'] = True
63
 
 
145
  outputs[output_title]['sql_query'] = task_results['sql_query']
146
  outputs[output_title]['dataframe'] = task_results['dataframe']
147
  outputs[output_title]['figure'] = task_results['figure']
148
+ outputs[output_title]['plot_information'] = task_results['plot_information']
149
  outputs[output_title]['status'] = task_results['status']
150
  errors['have_sql_query'] |= task_errors['have_sql_query']
151
  errors['have_dataframe'] |= task_errors['have_dataframe']
climateqa/engine/talk_to_data/workflow/ipcc.py CHANGED
@@ -37,7 +37,8 @@ async def process_output(
37
  'table': table,
38
  'sql_query': None,
39
  'dataframe': None,
40
- 'figure': None
 
41
  }
42
  errors = {
43
  'have_sql_query': False,
@@ -55,6 +56,8 @@ async def process_output(
55
  results['status'] = 'ERROR'
56
  return output_title, results, errors
57
 
 
 
58
  results['sql_query'] = sql_query
59
  errors['have_sql_query'] = True
60
 
@@ -140,6 +143,7 @@ async def ipcc_workflow(user_input: str) -> State:
140
  outputs[output_title]['sql_query'] = task_results['sql_query']
141
  outputs[output_title]['dataframe'] = task_results['dataframe']
142
  outputs[output_title]['figure'] = task_results['figure']
 
143
  outputs[output_title]['status'] = task_results['status']
144
  errors['have_sql_query'] |= task_errors['have_sql_query']
145
  errors['have_dataframe'] |= task_errors['have_dataframe']
 
37
  'table': table,
38
  'sql_query': None,
39
  'dataframe': None,
40
+ 'figure': None,
41
+ 'plot_information': None,
42
  }
43
  errors = {
44
  'have_sql_query': False,
 
56
  results['status'] = 'ERROR'
57
  return output_title, results, errors
58
 
59
+ results['plot_information'] = plot['plot_information'](table, params)
60
+
61
  results['sql_query'] = sql_query
62
  errors['have_sql_query'] = True
63
 
 
143
  outputs[output_title]['sql_query'] = task_results['sql_query']
144
  outputs[output_title]['dataframe'] = task_results['dataframe']
145
  outputs[output_title]['figure'] = task_results['figure']
146
+ outputs[output_title]['plot_information'] = task_results['plot_information']
147
  outputs[output_title]['status'] = task_results['status']
148
  errors['have_sql_query'] |= task_errors['have_sql_query']
149
  errors['have_dataframe'] |= task_errors['have_dataframe']
front/tabs/tab_drias.py CHANGED
@@ -18,6 +18,7 @@ class DriasUIElements(TypedDict):
18
  query_accordion: gr.Accordion
19
  drias_sql_query: gr.Textbox
20
  chart_accordion: gr.Accordion
 
21
  model_selection: gr.Dropdown
22
  drias_display: gr.Plot
23
  table_accordion: gr.Accordion
@@ -64,13 +65,14 @@ def filter_by_model(dataframes, figures, index_state, model_selection):
64
  return df, figure
65
 
66
 
67
- def on_table_click(selected_label, table_names, sql_queries, dataframes, plots):
68
  index = table_names.index(selected_label)
69
  figure = plots[index](dataframes[index])
70
  return (
71
  sql_queries[index],
72
  dataframes[index],
73
  figure,
 
74
  index,
75
  )
76
 
@@ -132,6 +134,8 @@ def create_drias_ui() -> DriasUIElements:
132
 
133
 
134
  with gr.Accordion(label="Chart", visible=False) as chart_accordion:
 
 
135
  model_selection = gr.Dropdown(
136
  label="Model", choices=DRIAS_MODELS, value="ALL", interactive=True
137
  )
@@ -154,6 +158,7 @@ def create_drias_ui() -> DriasUIElements:
154
  query_accordion=query_accordion,
155
  drias_sql_query=drias_sql_query,
156
  chart_accordion=chart_accordion,
 
157
  model_selection=model_selection,
158
  drias_display=drias_display,
159
  table_accordion=table_accordion,
@@ -168,6 +173,7 @@ def setup_drias_events(ui_elements: DriasUIElements, share_client=None, user_id=
168
  sql_queries_state = gr.State([])
169
  dataframes_state = gr.State([])
170
  plots_state = gr.State([])
 
171
  index_state = gr.State(0)
172
  table_names_list = gr.State([])
173
  user_id = gr.State(user_id)
@@ -188,9 +194,11 @@ def setup_drias_events(ui_elements: DriasUIElements, share_client=None, user_id=
188
  ui_elements["drias_sql_query"],
189
  ui_elements["drias_table"],
190
  ui_elements["drias_display"],
 
191
  sql_queries_state,
192
  dataframes_state,
193
  plots_state,
 
194
  index_state,
195
  table_names_list,
196
  ui_elements["result_text"],
@@ -226,6 +234,7 @@ def setup_drias_events(ui_elements: DriasUIElements, share_client=None, user_id=
226
  sql_queries_state,
227
  dataframes_state,
228
  plots_state,
 
229
  index_state,
230
  table_names_list,
231
  ui_elements["result_text"],
@@ -252,8 +261,8 @@ def setup_drias_events(ui_elements: DriasUIElements, share_client=None, user_id=
252
  # Handle table selection
253
  ui_elements["table_names_display"].change(
254
  fn=on_table_click,
255
- inputs=[ui_elements["table_names_display"], table_names_list, sql_queries_state, dataframes_state, plots_state],
256
- outputs=[ui_elements["drias_sql_query"], ui_elements["drias_table"], ui_elements["drias_display"], index_state],
257
  )
258
 
259
  def create_drias_tab(share_client=None, user_id=None):
 
18
  query_accordion: gr.Accordion
19
  drias_sql_query: gr.Textbox
20
  chart_accordion: gr.Accordion
21
+ plot_information: gr.Markdown
22
  model_selection: gr.Dropdown
23
  drias_display: gr.Plot
24
  table_accordion: gr.Accordion
 
65
  return df, figure
66
 
67
 
68
+ def on_table_click(selected_label, table_names, sql_queries, dataframes, plot_informations, plots):
69
  index = table_names.index(selected_label)
70
  figure = plots[index](dataframes[index])
71
  return (
72
  sql_queries[index],
73
  dataframes[index],
74
  figure,
75
+ plot_informations[index],
76
  index,
77
  )
78
 
 
134
 
135
 
136
  with gr.Accordion(label="Chart", visible=False) as chart_accordion:
137
+ with gr.Accordion(label="Informations about the plot", open=False):
138
+ plot_information = gr.Markdown(value = "")
139
  model_selection = gr.Dropdown(
140
  label="Model", choices=DRIAS_MODELS, value="ALL", interactive=True
141
  )
 
158
  query_accordion=query_accordion,
159
  drias_sql_query=drias_sql_query,
160
  chart_accordion=chart_accordion,
161
+ plot_information=plot_information,
162
  model_selection=model_selection,
163
  drias_display=drias_display,
164
  table_accordion=table_accordion,
 
173
  sql_queries_state = gr.State([])
174
  dataframes_state = gr.State([])
175
  plots_state = gr.State([])
176
+ plot_informations_state = gr.State([])
177
  index_state = gr.State(0)
178
  table_names_list = gr.State([])
179
  user_id = gr.State(user_id)
 
194
  ui_elements["drias_sql_query"],
195
  ui_elements["drias_table"],
196
  ui_elements["drias_display"],
197
+ ui_elements["plot_information"],
198
  sql_queries_state,
199
  dataframes_state,
200
  plots_state,
201
+ plot_informations_state,
202
  index_state,
203
  table_names_list,
204
  ui_elements["result_text"],
 
234
  sql_queries_state,
235
  dataframes_state,
236
  plots_state,
237
+ plot_informations_state,
238
  index_state,
239
  table_names_list,
240
  ui_elements["result_text"],
 
261
  # Handle table selection
262
  ui_elements["table_names_display"].change(
263
  fn=on_table_click,
264
+ inputs=[ui_elements["table_names_display"], table_names_list, sql_queries_state, dataframes_state, plot_informations_state, plots_state],
265
+ outputs=[ui_elements["drias_sql_query"], ui_elements["drias_table"], ui_elements["drias_display"], ui_elements["plot_information"], index_state],
266
  )
267
 
268
  def create_drias_tab(share_client=None, user_id=None):
front/tabs/tab_ipcc.py CHANGED
@@ -19,6 +19,7 @@ class ipccUIElements(TypedDict):
19
  query_accordion: gr.Accordion
20
  ipcc_sql_query: gr.Textbox
21
  chart_accordion: gr.Accordion
 
22
  scenario_selection: gr.Dropdown
23
  ipcc_display: gr.Plot
24
  table_accordion: gr.Accordion
@@ -52,7 +53,7 @@ def show_results(sql_queries_state, dataframes_state, plots_state, table_names):
52
 
53
 
54
  def show_filter_by_scenario(table_names, index_state, dataframes):
55
- if table_names[index_state].startswith("Choropleth Map"):
56
  df = dataframes[index_state]
57
  return gr.update(visible=True, choices=sorted(df["scenario"].unique()), value=df["scenario"].unique()[0])
58
  else:
@@ -78,13 +79,14 @@ def display_table_names(table_names, index_state):
78
  for name in table_names
79
  ]
80
 
81
- def on_table_click(selected_label, table_names, sql_queries, dataframes, plots):
82
  index = table_names.index(selected_label)
83
  figure = plots[index](dataframes[index])
84
  return (
85
  sql_queries[index],
86
  dataframes[index],
87
  figure,
 
88
  index,
89
  )
90
 
@@ -144,6 +146,9 @@ def create_ipcc_ui() -> ipccUIElements:
144
  )
145
 
146
  with gr.Accordion(label="Chart", visible=False) as chart_accordion:
 
 
 
147
  scenario_selection = gr.Dropdown(
148
  label="Scenario", choices=IPCC_MODELS, value="ALL", interactive=True, visible=False
149
  )
@@ -167,6 +172,7 @@ def create_ipcc_ui() -> ipccUIElements:
167
  query_accordion=query_accordion,
168
  ipcc_sql_query=ipcc_sql_query,
169
  chart_accordion=chart_accordion,
 
170
  scenario_selection=scenario_selection,
171
  ipcc_display=ipcc_display,
172
  table_accordion=table_accordion,
@@ -181,6 +187,7 @@ def setup_ipcc_events(ui_elements: ipccUIElements, share_client=None, user_id=No
181
  sql_queries_state = gr.State([])
182
  dataframes_state = gr.State([])
183
  plots_state = gr.State([])
 
184
  index_state = gr.State(0)
185
  table_names_list = gr.State([])
186
  user_id = gr.State(user_id)
@@ -201,9 +208,11 @@ def setup_ipcc_events(ui_elements: ipccUIElements, share_client=None, user_id=No
201
  ui_elements["ipcc_sql_query"],
202
  ui_elements["ipcc_table"],
203
  ui_elements["ipcc_display"],
 
204
  sql_queries_state,
205
  dataframes_state,
206
  plots_state,
 
207
  index_state,
208
  table_names_list,
209
  ui_elements["result_text"],
@@ -240,9 +249,11 @@ def setup_ipcc_events(ui_elements: ipccUIElements, share_client=None, user_id=No
240
  ui_elements["ipcc_sql_query"],
241
  ui_elements["ipcc_table"],
242
  ui_elements["ipcc_display"],
 
243
  sql_queries_state,
244
  dataframes_state,
245
  plots_state,
 
246
  index_state,
247
  table_names_list,
248
  ui_elements["result_text"],
@@ -273,8 +284,8 @@ def setup_ipcc_events(ui_elements: ipccUIElements, share_client=None, user_id=No
273
  # Handle table selection
274
  ui_elements["table_names_display"].change(
275
  fn=on_table_click,
276
- inputs=[ui_elements["table_names_display"], table_names_list, sql_queries_state, dataframes_state, plots_state],
277
- outputs=[ui_elements["ipcc_sql_query"], ui_elements["ipcc_table"], ui_elements["ipcc_display"], index_state],
278
  ).then(
279
  show_filter_by_scenario,
280
  inputs=[table_names_list, index_state, dataframes_state],
 
19
  query_accordion: gr.Accordion
20
  ipcc_sql_query: gr.Textbox
21
  chart_accordion: gr.Accordion
22
+ plot_information: gr.Markdown
23
  scenario_selection: gr.Dropdown
24
  ipcc_display: gr.Plot
25
  table_accordion: gr.Accordion
 
53
 
54
 
55
  def show_filter_by_scenario(table_names, index_state, dataframes):
56
+ if len(table_names) > 0 and table_names[index_state].startswith("Choropleth Map"):
57
  df = dataframes[index_state]
58
  return gr.update(visible=True, choices=sorted(df["scenario"].unique()), value=df["scenario"].unique()[0])
59
  else:
 
79
  for name in table_names
80
  ]
81
 
82
+ def on_table_click(selected_label, table_names, sql_queries, dataframes, plot_informations, plots):
83
  index = table_names.index(selected_label)
84
  figure = plots[index](dataframes[index])
85
  return (
86
  sql_queries[index],
87
  dataframes[index],
88
  figure,
89
+ plot_informations[index],
90
  index,
91
  )
92
 
 
146
  )
147
 
148
  with gr.Accordion(label="Chart", visible=False) as chart_accordion:
149
+ with gr.Accordion(label="Informations about the plot", open=False):
150
+ plot_information = gr.Markdown(value = "")
151
+
152
  scenario_selection = gr.Dropdown(
153
  label="Scenario", choices=IPCC_MODELS, value="ALL", interactive=True, visible=False
154
  )
 
172
  query_accordion=query_accordion,
173
  ipcc_sql_query=ipcc_sql_query,
174
  chart_accordion=chart_accordion,
175
+ plot_information=plot_information,
176
  scenario_selection=scenario_selection,
177
  ipcc_display=ipcc_display,
178
  table_accordion=table_accordion,
 
187
  sql_queries_state = gr.State([])
188
  dataframes_state = gr.State([])
189
  plots_state = gr.State([])
190
+ plot_informations_state = gr.State([])
191
  index_state = gr.State(0)
192
  table_names_list = gr.State([])
193
  user_id = gr.State(user_id)
 
208
  ui_elements["ipcc_sql_query"],
209
  ui_elements["ipcc_table"],
210
  ui_elements["ipcc_display"],
211
+ ui_elements["plot_information"],
212
  sql_queries_state,
213
  dataframes_state,
214
  plots_state,
215
+ plot_informations_state,
216
  index_state,
217
  table_names_list,
218
  ui_elements["result_text"],
 
249
  ui_elements["ipcc_sql_query"],
250
  ui_elements["ipcc_table"],
251
  ui_elements["ipcc_display"],
252
+ ui_elements["plot_information"],
253
  sql_queries_state,
254
  dataframes_state,
255
  plots_state,
256
+ plot_informations_state,
257
  index_state,
258
  table_names_list,
259
  ui_elements["result_text"],
 
284
  # Handle table selection
285
  ui_elements["table_names_display"].change(
286
  fn=on_table_click,
287
+ inputs=[ui_elements["table_names_display"], table_names_list, sql_queries_state, dataframes_state, plot_informations_state, plots_state],
288
+ outputs=[ui_elements["ipcc_sql_query"], ui_elements["ipcc_table"], ui_elements["ipcc_display"], ui_elements["plot_information"], index_state],
289
  ).then(
290
  show_filter_by_scenario,
291
  inputs=[table_names_list, index_state, dataframes_state],