timeki commited on
Commit
bf16b32
·
1 Parent(s): ac49be7

fix vectorstore use

Browse files
app.py CHANGED
@@ -7,7 +7,7 @@ from azure.storage.fileshare import ShareServiceClient
7
  # Import custom modules
8
  from climateqa.engine.embeddings import get_embeddings_function
9
  from climateqa.engine.llm import get_llm
10
- from climateqa.engine.vectorstore import get_vectorstore
11
  from climateqa.engine.reranker import get_reranker
12
  from climateqa.engine.graph import make_graph_agent, make_graph_agent_poc
13
  from climateqa.engine.chains.retrieve_papers import find_papers
@@ -67,9 +67,9 @@ user_id = create_user_id()
67
  # Create vectorstore and retriever
68
  embeddings_function = get_embeddings_function()
69
 
70
- vectorstore = get_vectorstore(provider="azure_search", embeddings=embeddings_function, index_name="climateqa-ipx")
71
- vectorstore_graphs = get_vectorstore(provider="azure_search", embeddings=embeddings_function, index_name="climateqa-owid", text_key="description")
72
- vectorstore_region = get_vectorstore(provider="azure_search", embeddings=embeddings_function, index_name="climateqa-v2")
73
 
74
 
75
  llm = get_llm(provider="openai", max_tokens=1024, temperature=0.0)
 
7
  # Import custom modules
8
  from climateqa.engine.embeddings import get_embeddings_function
9
  from climateqa.engine.llm import get_llm
10
+ from climateqa.engine.vectorstore import get_azure_search_vectorstore
11
  from climateqa.engine.reranker import get_reranker
12
  from climateqa.engine.graph import make_graph_agent, make_graph_agent_poc
13
  from climateqa.engine.chains.retrieve_papers import find_papers
 
67
  # Create vectorstore and retriever
68
  embeddings_function = get_embeddings_function()
69
 
70
+ vectorstore = get_azure_search_vectorstore(embeddings=embeddings_function, index_name="climateqa-ipx")
71
+ vectorstore_graphs = get_azure_search_vectorstore(embeddings=embeddings_function, index_name="climateqa-owid", text_key="description")
72
+ vectorstore_region = get_azure_search_vectorstore(embeddings=embeddings_function, index_name="climateqa-v2")
73
 
74
 
75
  llm = get_llm(provider="openai", max_tokens=1024, temperature=0.0)
climateqa/engine/chains/retrieve_documents.py CHANGED
@@ -19,7 +19,7 @@ from ..llm import get_llm
19
  from .prompts import retrieve_chapter_prompt_template
20
  from langchain_core.prompts import ChatPromptTemplate
21
  from langchain_core.output_parsers import StrOutputParser
22
- from ..vectorstore import get_vectorstore
23
  from ..embeddings import get_embeddings_function
24
  import ast
25
 
@@ -134,7 +134,7 @@ def get_ToCs(version: str) :
134
  "version": version
135
  }
136
  embeddings_function = get_embeddings_function()
137
- vectorstore = get_vectorstore(provider="qdrant", embeddings=embeddings_function, index_name="climateqa")
138
  tocs = vectorstore.similarity_search_with_score(query="",filter = filters_text)
139
 
140
  # remove duplicates or almost duplicates
 
19
  from .prompts import retrieve_chapter_prompt_template
20
  from langchain_core.prompts import ChatPromptTemplate
21
  from langchain_core.output_parsers import StrOutputParser
22
+ from ..vectorstore import get_azure_search_vectorstore
23
  from ..embeddings import get_embeddings_function
24
  import ast
25
 
 
134
  "version": version
135
  }
136
  embeddings_function = get_embeddings_function()
137
+ vectorstore = get_azure_search_vectorstore(embeddings=embeddings_function, index_name="climateqa")
138
  tocs = vectorstore.similarity_search_with_score(query="",filter = filters_text)
139
 
140
  # remove duplicates or almost duplicates