Commit
·
c3024c3
1
Parent(s):
ac63459
feat: updated talk to drias based on talk to ipcc
Browse files
climateqa/engine/talk_to_data/drias/config.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
|
2 |
DRIAS_TABLES = [
|
3 |
"total_winter_precipitation",
|
4 |
-
"
|
5 |
"total_annual_precipitation",
|
6 |
"total_remarkable_daily_precipitation",
|
7 |
"frequency_of_remarkable_daily_precipitation",
|
@@ -18,7 +18,7 @@ DRIAS_TABLES = [
|
|
18 |
|
19 |
DRIAS_INDICATOR_COLUMNS_PER_TABLE = {
|
20 |
"total_winter_precipitation": "total_winter_precipitation",
|
21 |
-
"
|
22 |
"total_annual_precipitation": "total_annual_precipitation",
|
23 |
"total_remarkable_daily_precipitation": "total_remarkable_daily_precipitation",
|
24 |
"frequency_of_remarkable_daily_precipitation": "frequency_of_remarkable_daily_precipitation",
|
@@ -70,11 +70,14 @@ DRIAS_INDICATOR_TO_UNIT = {
|
|
70 |
"number_of_days_with_dry_ground": "days"
|
71 |
}
|
72 |
|
|
|
|
|
|
|
|
|
73 |
DRIAS_UI_TEXT = """
|
74 |
Hi, I'm **Talk to Drias**, designed to answer your questions using [**DRIAS - TRACC 2023**](https://www.drias-climat.fr/accompagnement/sections/401) data.
|
75 |
I'll answer by displaying a list of SQL queries, graphs and data most relevant to your question.
|
76 |
|
77 |
-
❓ **How to use?**
|
78 |
You can ask me anything about these climate indicators: **temperature**, **precipitation** or **drought**.
|
79 |
You can specify **location** and/or **year**.
|
80 |
You can choose from a list of climate models. By default, we take the **average of each model**.
|
|
|
1 |
|
2 |
DRIAS_TABLES = [
|
3 |
"total_winter_precipitation",
|
4 |
+
"total_summer_precipitation",
|
5 |
"total_annual_precipitation",
|
6 |
"total_remarkable_daily_precipitation",
|
7 |
"frequency_of_remarkable_daily_precipitation",
|
|
|
18 |
|
19 |
DRIAS_INDICATOR_COLUMNS_PER_TABLE = {
|
20 |
"total_winter_precipitation": "total_winter_precipitation",
|
21 |
+
"total_summer_precipitation": "total_summer_precipitation",
|
22 |
"total_annual_precipitation": "total_annual_precipitation",
|
23 |
"total_remarkable_daily_precipitation": "total_remarkable_daily_precipitation",
|
24 |
"frequency_of_remarkable_daily_precipitation": "frequency_of_remarkable_daily_precipitation",
|
|
|
70 |
"number_of_days_with_dry_ground": "days"
|
71 |
}
|
72 |
|
73 |
+
DRIAS_PLOT_PARAMETERS = [
|
74 |
+
'year',
|
75 |
+
'location'
|
76 |
+
]
|
77 |
DRIAS_UI_TEXT = """
|
78 |
Hi, I'm **Talk to Drias**, designed to answer your questions using [**DRIAS - TRACC 2023**](https://www.drias-climat.fr/accompagnement/sections/401) data.
|
79 |
I'll answer by displaying a list of SQL queries, graphs and data most relevant to your question.
|
80 |
|
|
|
81 |
You can ask me anything about these climate indicators: **temperature**, **precipitation** or **drought**.
|
82 |
You can specify **location** and/or **year**.
|
83 |
You can choose from a list of climate models. By default, we take the **average of each model**.
|
climateqa/engine/talk_to_data/drias/plots.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import os
|
2 |
-
|
|
|
3 |
from typing import Callable
|
4 |
import pandas as pd
|
5 |
from plotly.graph_objects import Figure
|
@@ -11,6 +12,7 @@ from climateqa.engine.talk_to_data.drias.queries import (
|
|
11 |
)
|
12 |
from climateqa.engine.talk_to_data.drias.config import DRIAS_INDICATOR_TO_UNIT
|
13 |
|
|
|
14 |
def plot_indicator_evolution_at_location(params: dict) -> Callable[..., Figure]:
|
15 |
"""Generates a function to plot indicator evolution over time at a location.
|
16 |
|
@@ -122,10 +124,11 @@ def plot_indicator_evolution_at_location(params: dict) -> Callable[..., Figure]:
|
|
122 |
hovertemplate=f"{indicator_label}: %{{y:.2f}} {unit}<br>Year: %{{x}}<extra></extra>"
|
123 |
)
|
124 |
fig.update_layout(
|
125 |
-
title=f"
|
126 |
xaxis_title="Year",
|
127 |
yaxis_title=f"{indicator_label} ({unit})",
|
128 |
template="plotly_white",
|
|
|
129 |
)
|
130 |
return fig
|
131 |
|
@@ -138,6 +141,7 @@ indicator_evolution_at_location: Plot = {
|
|
138 |
"params": ["indicator_column", "location", "model"],
|
139 |
"plot_function": plot_indicator_evolution_at_location,
|
140 |
"sql_query": indicator_per_year_at_location_query,
|
|
|
141 |
}
|
142 |
|
143 |
|
@@ -206,6 +210,7 @@ def plot_indicator_number_of_days_per_year_at_location(
|
|
206 |
yaxis_title=f"{indicator_label} ({unit})",
|
207 |
yaxis=dict(range=[0, max(indicators)]),
|
208 |
bargap=0.5,
|
|
|
209 |
template="plotly_white",
|
210 |
)
|
211 |
|
@@ -220,6 +225,7 @@ indicator_number_of_days_per_year_at_location: Plot = {
|
|
220 |
"params": ["indicator_column", "location", "model"],
|
221 |
"plot_function": plot_indicator_number_of_days_per_year_at_location,
|
222 |
"sql_query": indicator_per_year_at_location_query,
|
|
|
223 |
}
|
224 |
|
225 |
|
@@ -242,6 +248,8 @@ def plot_distribution_of_indicator_for_given_year(
|
|
242 |
"""
|
243 |
indicator = params["indicator_column"]
|
244 |
year = params["year"]
|
|
|
|
|
245 |
indicator_label = " ".join([word.capitalize() for word in indicator.split("_")])
|
246 |
unit = DRIAS_INDICATOR_TO_UNIT.get(indicator, "")
|
247 |
|
@@ -288,6 +296,7 @@ def plot_distribution_of_indicator_for_given_year(
|
|
288 |
yaxis_title="Frequency (%)",
|
289 |
plot_bgcolor="rgba(0, 0, 0, 0)",
|
290 |
showlegend=False,
|
|
|
291 |
)
|
292 |
|
293 |
return fig
|
@@ -301,6 +310,7 @@ distribution_of_indicator_for_given_year: Plot = {
|
|
301 |
"params": ["indicator_column", "model", "year"],
|
302 |
"plot_function": plot_distribution_of_indicator_for_given_year,
|
303 |
"sql_query": indicator_for_given_year_query,
|
|
|
304 |
}
|
305 |
|
306 |
|
@@ -323,6 +333,8 @@ def plot_map_of_france_of_indicator_for_given_year(
|
|
323 |
"""
|
324 |
indicator = params["indicator_column"]
|
325 |
year = params["year"]
|
|
|
|
|
326 |
indicator_label = " ".join([word.capitalize() for word in indicator.split("_")])
|
327 |
unit = DRIAS_INDICATOR_TO_UNIT.get(indicator, "")
|
328 |
|
@@ -347,28 +359,60 @@ def plot_map_of_france_of_indicator_for_given_year(
|
|
347 |
longitudes = df_model["longitude"].astype(float).tolist()
|
348 |
model_label = f"Model : {df['model'].unique()[0]}"
|
349 |
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
368 |
|
369 |
fig.update_layout(
|
370 |
mapbox_style="open-street-map", # Use OpenStreetMap
|
371 |
-
mapbox_zoom=
|
|
|
372 |
mapbox_center={"lat": 46.6, "lon": 2.0},
|
373 |
coloraxis_colorbar=dict(title=f"{indicator_label} ({unit})"), # Add legend
|
374 |
title=f"{indicator_label} in {year} in France ({model_label}) " # Title
|
@@ -380,10 +424,11 @@ def plot_map_of_france_of_indicator_for_given_year(
|
|
380 |
|
381 |
map_of_france_of_indicator_for_given_year: Plot = {
|
382 |
"name": "Map of France of an indicator for a given year",
|
383 |
-
"description": "Heatmap on the map of France of the values of an
|
384 |
"params": ["indicator_column", "year", "model"],
|
385 |
"plot_function": plot_map_of_france_of_indicator_for_given_year,
|
386 |
"sql_query": indicator_for_given_year_query,
|
|
|
387 |
}
|
388 |
|
389 |
DRIAS_PLOTS = [
|
|
|
1 |
import os
|
2 |
+
import geojson
|
3 |
+
from math import cos, radians
|
4 |
from typing import Callable
|
5 |
import pandas as pd
|
6 |
from plotly.graph_objects import Figure
|
|
|
12 |
)
|
13 |
from climateqa.engine.talk_to_data.drias.config import DRIAS_INDICATOR_TO_UNIT
|
14 |
|
15 |
+
|
16 |
def plot_indicator_evolution_at_location(params: dict) -> Callable[..., Figure]:
|
17 |
"""Generates a function to plot indicator evolution over time at a location.
|
18 |
|
|
|
124 |
hovertemplate=f"{indicator_label}: %{{y:.2f}} {unit}<br>Year: %{{x}}<extra></extra>"
|
125 |
)
|
126 |
fig.update_layout(
|
127 |
+
title=f"Evolution of {indicator_label} in {location} ({model_label})",
|
128 |
xaxis_title="Year",
|
129 |
yaxis_title=f"{indicator_label} ({unit})",
|
130 |
template="plotly_white",
|
131 |
+
height=900,
|
132 |
)
|
133 |
return fig
|
134 |
|
|
|
141 |
"params": ["indicator_column", "location", "model"],
|
142 |
"plot_function": plot_indicator_evolution_at_location,
|
143 |
"sql_query": indicator_per_year_at_location_query,
|
144 |
+
'short_name': 'Indicator Evolution'
|
145 |
}
|
146 |
|
147 |
|
|
|
210 |
yaxis_title=f"{indicator_label} ({unit})",
|
211 |
yaxis=dict(range=[0, max(indicators)]),
|
212 |
bargap=0.5,
|
213 |
+
height=900,
|
214 |
template="plotly_white",
|
215 |
)
|
216 |
|
|
|
225 |
"params": ["indicator_column", "location", "model"],
|
226 |
"plot_function": plot_indicator_number_of_days_per_year_at_location,
|
227 |
"sql_query": indicator_per_year_at_location_query,
|
228 |
+
"short_name": "Indicator Yearly Frequency",
|
229 |
}
|
230 |
|
231 |
|
|
|
248 |
"""
|
249 |
indicator = params["indicator_column"]
|
250 |
year = params["year"]
|
251 |
+
if year is None:
|
252 |
+
year = 2030
|
253 |
indicator_label = " ".join([word.capitalize() for word in indicator.split("_")])
|
254 |
unit = DRIAS_INDICATOR_TO_UNIT.get(indicator, "")
|
255 |
|
|
|
296 |
yaxis_title="Frequency (%)",
|
297 |
plot_bgcolor="rgba(0, 0, 0, 0)",
|
298 |
showlegend=False,
|
299 |
+
height=900,
|
300 |
)
|
301 |
|
302 |
return fig
|
|
|
310 |
"params": ["indicator_column", "model", "year"],
|
311 |
"plot_function": plot_distribution_of_indicator_for_given_year,
|
312 |
"sql_query": indicator_for_given_year_query,
|
313 |
+
'short_name': 'Indicator Distribution'
|
314 |
}
|
315 |
|
316 |
|
|
|
333 |
"""
|
334 |
indicator = params["indicator_column"]
|
335 |
year = params["year"]
|
336 |
+
if year is None:
|
337 |
+
year = 2030
|
338 |
indicator_label = " ".join([word.capitalize() for word in indicator.split("_")])
|
339 |
unit = DRIAS_INDICATOR_TO_UNIT.get(indicator, "")
|
340 |
|
|
|
359 |
longitudes = df_model["longitude"].astype(float).tolist()
|
360 |
model_label = f"Model : {df['model'].unique()[0]}"
|
361 |
|
362 |
+
side_km = 8
|
363 |
+
delta_lat = side_km / 111
|
364 |
+
features = []
|
365 |
+
for idx, (lat, lon, val) in enumerate(zip(latitudes, longitudes, indicators)):
|
366 |
+
delta_lon = side_km / (111 * cos(radians(lat)))
|
367 |
+
half_lat = delta_lat / 2
|
368 |
+
half_lon = delta_lon / 2
|
369 |
+
features.append(geojson.Feature(
|
370 |
+
geometry=geojson.Polygon([[
|
371 |
+
[lon - half_lon, lat - half_lat],
|
372 |
+
[lon + half_lon, lat - half_lat],
|
373 |
+
[lon + half_lon, lat + half_lat],
|
374 |
+
[lon - half_lon, lat + half_lat],
|
375 |
+
[lon - half_lon, lat - half_lat]
|
376 |
+
]]),
|
377 |
+
properties={"value": val},
|
378 |
+
id=str(idx)
|
379 |
+
))
|
380 |
+
|
381 |
+
geojson_data = geojson.FeatureCollection(features)
|
382 |
+
|
383 |
+
custom_colorscale = [
|
384 |
+
[0.0, "rgb(5, 48, 97)"],
|
385 |
+
[0.10, "rgb(33, 102, 172)"],
|
386 |
+
[0.20, "rgb(67, 147, 195)"],
|
387 |
+
[0.30, "rgb(146, 197, 222)"],
|
388 |
+
[0.40, "rgb(209, 229, 240)"],
|
389 |
+
[0.50, "rgb(247, 247, 247)"],
|
390 |
+
[0.60, "rgb(253, 219, 199)"],
|
391 |
+
[0.75, "rgb(244, 165, 130)"],
|
392 |
+
[0.85, "rgb(214, 96, 77)"],
|
393 |
+
[0.90, "rgb(178, 24, 43)"],
|
394 |
+
[1.0, "rgb(103, 0, 31)"]
|
395 |
+
]
|
396 |
+
|
397 |
+
fig = go.Figure(go.Choroplethmapbox(
|
398 |
+
geojson=geojson_data,
|
399 |
+
locations=[str(i) for i in range(len(indicators))],
|
400 |
+
featureidkey="id",
|
401 |
+
z=indicators,
|
402 |
+
colorscale=custom_colorscale,
|
403 |
+
zmin=min(indicators),
|
404 |
+
zmax=max(indicators),
|
405 |
+
marker_opacity=0.7,
|
406 |
+
marker_line_width=0,
|
407 |
+
colorbar_title=f"{indicator_label} ({unit})",
|
408 |
+
text=[f"{indicator_label}: {value:.2f} {unit}" for value in indicators], # Add hover text showing the indicator value
|
409 |
+
hoverinfo="text"
|
410 |
+
))
|
411 |
|
412 |
fig.update_layout(
|
413 |
mapbox_style="open-street-map", # Use OpenStreetMap
|
414 |
+
mapbox_zoom=5,
|
415 |
+
height=900,
|
416 |
mapbox_center={"lat": 46.6, "lon": 2.0},
|
417 |
coloraxis_colorbar=dict(title=f"{indicator_label} ({unit})"), # Add legend
|
418 |
title=f"{indicator_label} in {year} in France ({model_label}) " # Title
|
|
|
424 |
|
425 |
map_of_france_of_indicator_for_given_year: Plot = {
|
426 |
"name": "Map of France of an indicator for a given year",
|
427 |
+
"description": "Heatmap on the map of France of the values of an indicator for a given year",
|
428 |
"params": ["indicator_column", "year", "model"],
|
429 |
"plot_function": plot_map_of_france_of_indicator_for_given_year,
|
430 |
"sql_query": indicator_for_given_year_query,
|
431 |
+
'short_name': 'Map of France'
|
432 |
}
|
433 |
|
434 |
DRIAS_PLOTS = [
|
climateqa/engine/talk_to_data/drias/queries.py
CHANGED
@@ -71,6 +71,8 @@ def indicator_for_given_year_query(
|
|
71 |
"""
|
72 |
indicator_column = params.get("indicator_column")
|
73 |
year = params.get('year')
|
|
|
|
|
74 |
if year is None or indicator_column is None: # If one parameter is missing, returns an empty query
|
75 |
return ""
|
76 |
|
|
|
71 |
"""
|
72 |
indicator_column = params.get("indicator_column")
|
73 |
year = params.get('year')
|
74 |
+
if year is None:
|
75 |
+
year = 2050
|
76 |
if year is None or indicator_column is None: # If one parameter is missing, returns an empty query
|
77 |
return ""
|
78 |
|
climateqa/engine/talk_to_data/workflow/drias.py
CHANGED
@@ -6,131 +6,154 @@ from climateqa.engine.llm import get_llm
|
|
6 |
from climateqa.engine.talk_to_data.input_processing import find_param, find_relevant_plots, find_relevant_tables_per_plot
|
7 |
from climateqa.engine.talk_to_data.query import execute_sql_query, find_indicator_column
|
8 |
from climateqa.engine.talk_to_data.objects.plot import Plot
|
9 |
-
from climateqa.engine.talk_to_data.objects.states import
|
10 |
-
from climateqa.engine.talk_to_data.drias.config import DRIAS_TABLES, DRIAS_INDICATOR_COLUMNS_PER_TABLE
|
11 |
from climateqa.engine.talk_to_data.drias.plots import DRIAS_PLOTS
|
12 |
|
13 |
ROOT_PATH = os.path.dirname(os.path.dirname(os.getcwd()))
|
14 |
|
15 |
-
async def
|
|
|
16 |
table: str,
|
17 |
-
params: dict[str, Any],
|
18 |
plot: Plot,
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
and generates
|
24 |
-
|
25 |
Args:
|
26 |
-
|
27 |
-
|
28 |
-
plot (Plot): The plot object containing SQL query and visualization function
|
29 |
-
|
|
|
30 |
Returns:
|
31 |
-
|
32 |
"""
|
33 |
-
|
34 |
-
'table_name': table,
|
35 |
-
'params': params.copy(),
|
36 |
'status': 'OK',
|
37 |
-
'
|
|
|
38 |
'sql_query': None,
|
|
|
39 |
'figure': None
|
40 |
}
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
|
51 |
-
|
52 |
-
|
53 |
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
|
|
|
|
|
|
|
|
56 |
|
57 |
async def drias_workflow(user_input: str) -> State:
|
58 |
-
"""
|
|
|
59 |
|
60 |
Args:
|
61 |
-
user_input (str):
|
62 |
|
63 |
Returns:
|
64 |
-
State: Final state with all
|
65 |
"""
|
66 |
state: State = {
|
67 |
'user_input': user_input,
|
68 |
'plots': [],
|
69 |
-
'
|
70 |
'error': ''
|
71 |
}
|
72 |
|
73 |
llm = get_llm(provider="openai")
|
74 |
-
|
75 |
plots = await find_relevant_plots(state, llm, DRIAS_PLOTS)
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
if len(state['plots']) < 1:
|
80 |
state['error'] = 'There is no plot to answer to the question'
|
81 |
return state
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
have_dataframe = False
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
if plot is None:
|
91 |
continue
|
92 |
-
|
93 |
-
plot_state: PlotState = {
|
94 |
-
'plot_name': plot_name,
|
95 |
-
'tables': [],
|
96 |
-
'table_states': {}
|
97 |
-
}
|
98 |
-
|
99 |
-
plot_state['plot_name'] = plot_name
|
100 |
|
101 |
relevant_tables = await find_relevant_tables_per_plot(state, plot, llm, DRIAS_TABLES)
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
state['error'] = "There is no relevant table in our database to answer your question"
|
131 |
-
elif not have_sql_query:
|
132 |
state['error'] = "There is no relevant sql query on our database that can help to answer your question"
|
133 |
-
elif not have_dataframe:
|
134 |
state['error'] = "There is no data in our table that can answer to your question"
|
135 |
-
|
136 |
-
return state
|
|
|
6 |
from climateqa.engine.talk_to_data.input_processing import find_param, find_relevant_plots, find_relevant_tables_per_plot
|
7 |
from climateqa.engine.talk_to_data.query import execute_sql_query, find_indicator_column
|
8 |
from climateqa.engine.talk_to_data.objects.plot import Plot
|
9 |
+
from climateqa.engine.talk_to_data.objects.states import State, TTDOutput
|
10 |
+
from climateqa.engine.talk_to_data.drias.config import DRIAS_TABLES, DRIAS_INDICATOR_COLUMNS_PER_TABLE, DRIAS_PLOT_PARAMETERS
|
11 |
from climateqa.engine.talk_to_data.drias.plots import DRIAS_PLOTS
|
12 |
|
13 |
ROOT_PATH = os.path.dirname(os.path.dirname(os.getcwd()))
|
14 |
|
15 |
+
async def process_output(
|
16 |
+
output_title: str,
|
17 |
table: str,
|
|
|
18 |
plot: Plot,
|
19 |
+
params: dict[str, Any]
|
20 |
+
) -> tuple[str, TTDOutput, dict[str, bool]]:
|
21 |
+
"""
|
22 |
+
Processes a table for a given plot and parameters: builds the SQL query, executes it,
|
23 |
+
and generates the corresponding figure.
|
24 |
+
|
25 |
Args:
|
26 |
+
output_title (str): Title for the output (used as key in outputs dict).
|
27 |
+
table (str): The name of the table to process.
|
28 |
+
plot (Plot): The plot object containing SQL query and visualization function.
|
29 |
+
params (dict[str, Any]): Parameters used for querying the table.
|
30 |
+
|
31 |
Returns:
|
32 |
+
tuple: (output_title, results dict, errors dict)
|
33 |
"""
|
34 |
+
results: TTDOutput = {
|
|
|
|
|
35 |
'status': 'OK',
|
36 |
+
'plot': plot,
|
37 |
+
'table': table,
|
38 |
'sql_query': None,
|
39 |
+
'dataframe': None,
|
40 |
'figure': None
|
41 |
}
|
42 |
+
errors = {
|
43 |
+
'have_sql_query': False,
|
44 |
+
'have_dataframe': False
|
45 |
+
}
|
46 |
|
47 |
+
# Find the indicator column for this table
|
48 |
+
indicator_column = find_indicator_column(table, DRIAS_INDICATOR_COLUMNS_PER_TABLE)
|
49 |
+
if indicator_column:
|
50 |
+
params['indicator_column'] = indicator_column
|
51 |
|
52 |
+
# Build the SQL query
|
53 |
+
sql_query = plot['sql_query'](table, params)
|
54 |
+
if not sql_query:
|
55 |
+
results['status'] = 'ERROR'
|
56 |
+
return output_title, results, errors
|
57 |
|
58 |
+
results['sql_query'] = sql_query
|
59 |
+
errors['have_sql_query'] = True
|
60 |
|
61 |
+
# Execute the SQL query
|
62 |
+
df = await execute_sql_query(sql_query)
|
63 |
+
if df is not None and len(df) > 0:
|
64 |
+
results['dataframe'] = df
|
65 |
+
errors['have_dataframe'] = True
|
66 |
+
else:
|
67 |
+
results['status'] = 'NO_DATA'
|
68 |
|
69 |
+
# Generate the figure (always, even if df is empty, for consistency)
|
70 |
+
results['figure'] = plot['plot_function'](params)
|
71 |
+
|
72 |
+
return output_title, results, errors
|
73 |
|
74 |
async def drias_workflow(user_input: str) -> State:
|
75 |
+
"""
|
76 |
+
Orchestrates the DRIAS workflow: from user input to SQL queries, dataframes, and figures.
|
77 |
|
78 |
Args:
|
79 |
+
user_input (str): The user's question.
|
80 |
|
81 |
Returns:
|
82 |
+
State: Final state with all results and error messages if any.
|
83 |
"""
|
84 |
state: State = {
|
85 |
'user_input': user_input,
|
86 |
'plots': [],
|
87 |
+
'outputs': {},
|
88 |
'error': ''
|
89 |
}
|
90 |
|
91 |
llm = get_llm(provider="openai")
|
|
|
92 |
plots = await find_relevant_plots(state, llm, DRIAS_PLOTS)
|
93 |
|
94 |
+
if not plots:
|
|
|
|
|
95 |
state['error'] = 'There is no plot to answer to the question'
|
96 |
return state
|
97 |
|
98 |
+
plots = plots[:2] # limit to 2 types of plots
|
99 |
+
state['plots'] = plots
|
|
|
100 |
|
101 |
+
errors = {
|
102 |
+
'have_relevant_table': False,
|
103 |
+
'have_sql_query': False,
|
104 |
+
'have_dataframe': False
|
105 |
+
}
|
106 |
+
outputs = {}
|
107 |
+
|
108 |
+
# Find relevant tables for each plot and prepare outputs
|
109 |
+
for plot_name in plots:
|
110 |
+
plot = next((p for p in DRIAS_PLOTS if p['name'] == plot_name), None)
|
111 |
if plot is None:
|
112 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
relevant_tables = await find_relevant_tables_per_plot(state, plot, llm, DRIAS_TABLES)
|
115 |
+
if relevant_tables:
|
116 |
+
errors['have_relevant_table'] = True
|
117 |
+
|
118 |
+
for table in relevant_tables:
|
119 |
+
output_title = f"{plot['short_name']} - {' '.join(table.capitalize().split('_'))}"
|
120 |
+
outputs[output_title] = {
|
121 |
+
'table': table,
|
122 |
+
'plot': plot,
|
123 |
+
'status': 'OK'
|
124 |
+
}
|
125 |
+
|
126 |
+
# Gather all required parameters
|
127 |
+
params = {}
|
128 |
+
for param_name in DRIAS_PLOT_PARAMETERS:
|
129 |
+
param = await find_param(state, param_name, mode='DRIAS')
|
130 |
+
if param:
|
131 |
+
params.update(param)
|
132 |
+
|
133 |
+
# Process all outputs in parallel using process_output
|
134 |
+
tasks = [
|
135 |
+
process_output(output_title, output['table'], output['plot'], params.copy())
|
136 |
+
for output_title, output in outputs.items()
|
137 |
+
]
|
138 |
+
results = await asyncio.gather(*tasks)
|
139 |
+
|
140 |
+
# Update outputs with results and error flags
|
141 |
+
for output_title, task_results, task_errors in results:
|
142 |
+
outputs[output_title]['sql_query'] = task_results['sql_query']
|
143 |
+
outputs[output_title]['dataframe'] = task_results['dataframe']
|
144 |
+
outputs[output_title]['figure'] = task_results['figure']
|
145 |
+
outputs[output_title]['status'] = task_results['status']
|
146 |
+
errors['have_sql_query'] |= task_errors['have_sql_query']
|
147 |
+
errors['have_dataframe'] |= task_errors['have_dataframe']
|
148 |
+
|
149 |
+
state['outputs'] = outputs
|
150 |
+
|
151 |
+
# Set error messages if needed
|
152 |
+
if not errors['have_relevant_table']:
|
153 |
state['error'] = "There is no relevant table in our database to answer your question"
|
154 |
+
elif not errors['have_sql_query']:
|
155 |
state['error'] = "There is no relevant sql query on our database that can help to answer your question"
|
156 |
+
elif not errors['have_dataframe']:
|
157 |
state['error'] = "There is no data in our table that can answer to your question"
|
158 |
+
|
159 |
+
return state
|
front/tabs/tab_drias.py
CHANGED
@@ -11,9 +11,10 @@ class DriasUIElements(TypedDict):
|
|
11 |
details_accordion: gr.Accordion
|
12 |
examples_hidden: gr.Textbox
|
13 |
examples: gr.Examples
|
|
|
14 |
drias_direct_question: gr.Textbox
|
15 |
result_text: gr.Textbox
|
16 |
-
table_names_display: gr.
|
17 |
query_accordion: gr.Accordion
|
18 |
drias_sql_query: gr.Textbox
|
19 |
chart_accordion: gr.Accordion
|
@@ -21,9 +22,6 @@ class DriasUIElements(TypedDict):
|
|
21 |
drias_display: gr.Plot
|
22 |
table_accordion: gr.Accordion
|
23 |
drias_table: gr.DataFrame
|
24 |
-
pagination_display: gr.Markdown
|
25 |
-
prev_button: gr.Button
|
26 |
-
next_button: gr.Button
|
27 |
|
28 |
|
29 |
async def ask_drias_query(query: str, index_state: int, user_id: str):
|
@@ -31,7 +29,7 @@ async def ask_drias_query(query: str, index_state: int, user_id: str):
|
|
31 |
return result
|
32 |
|
33 |
|
34 |
-
def show_results(sql_queries_state, dataframes_state, plots_state):
|
35 |
if not sql_queries_state or not dataframes_state or not plots_state:
|
36 |
# If all results are empty, show "No result"
|
37 |
return (
|
@@ -40,9 +38,6 @@ def show_results(sql_queries_state, dataframes_state, plots_state):
|
|
40 |
gr.update(visible=False),
|
41 |
gr.update(visible=False),
|
42 |
gr.update(visible=False),
|
43 |
-
gr.update(visible=False),
|
44 |
-
gr.update(visible=False),
|
45 |
-
gr.update(visible=False),
|
46 |
)
|
47 |
else:
|
48 |
# Show the appropriate components with their data
|
@@ -51,10 +46,7 @@ def show_results(sql_queries_state, dataframes_state, plots_state):
|
|
51 |
gr.update(visible=True),
|
52 |
gr.update(visible=True),
|
53 |
gr.update(visible=True),
|
54 |
-
gr.update(visible=True),
|
55 |
-
gr.update(visible=True),
|
56 |
-
gr.update(visible=True),
|
57 |
-
gr.update(visible=True),
|
58 |
)
|
59 |
|
60 |
|
@@ -72,39 +64,8 @@ def filter_by_model(dataframes, figures, index_state, model_selection):
|
|
72 |
return df, figure
|
73 |
|
74 |
|
75 |
-
def
|
76 |
-
|
77 |
-
return pagination
|
78 |
-
|
79 |
-
|
80 |
-
def show_previous(index, sql_queries, dataframes, plots):
|
81 |
-
if index > 0:
|
82 |
-
index -= 1
|
83 |
-
return (
|
84 |
-
sql_queries[index],
|
85 |
-
dataframes[index],
|
86 |
-
plots[index](dataframes[index]),
|
87 |
-
index,
|
88 |
-
)
|
89 |
-
|
90 |
-
|
91 |
-
def show_next(index, sql_queries, dataframes, plots):
|
92 |
-
if index < len(sql_queries) - 1:
|
93 |
-
index += 1
|
94 |
-
return (
|
95 |
-
sql_queries[index],
|
96 |
-
dataframes[index],
|
97 |
-
plots[index](dataframes[index]),
|
98 |
-
index,
|
99 |
-
)
|
100 |
-
|
101 |
-
|
102 |
-
def display_table_names(table_names):
|
103 |
-
return [[table_name] for table_name in table_names]
|
104 |
-
|
105 |
-
|
106 |
-
def on_table_click(evt: gr.SelectData, table_names, sql_queries, dataframes, plots):
|
107 |
-
index = evt.index[1]
|
108 |
figure = plots[index](dataframes[index])
|
109 |
return (
|
110 |
sql_queries[index],
|
@@ -117,7 +78,7 @@ def on_table_click(evt: gr.SelectData, table_names, sql_queries, dataframes, plo
|
|
117 |
def create_drias_ui() -> DriasUIElements:
|
118 |
"""Create and return all UI elements for the DRIAS tab."""
|
119 |
with gr.Tab("France - Talk to DRIAS", elem_id="tab-vanna", id=6) as tab:
|
120 |
-
with gr.Accordion(label="
|
121 |
gr.Markdown(DRIAS_UI_TEXT)
|
122 |
|
123 |
# Add examples for common questions
|
@@ -141,19 +102,35 @@ def create_drias_ui() -> DriasUIElements:
|
|
141 |
elem_id="direct-question",
|
142 |
interactive=True,
|
143 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
result_text = gr.Textbox(
|
146 |
label="", elem_id="no-result-label", interactive=False, visible=True
|
147 |
)
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
155 |
)
|
156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
with gr.Accordion(label="Chart", visible=False) as chart_accordion:
|
158 |
model_selection = gr.Dropdown(
|
159 |
label="Model", choices=DRIAS_MODELS, value="ALL", interactive=True
|
@@ -165,19 +142,12 @@ def create_drias_ui() -> DriasUIElements:
|
|
165 |
) as table_accordion:
|
166 |
drias_table = gr.DataFrame([], elem_id="vanna-table")
|
167 |
|
168 |
-
pagination_display = gr.Markdown(
|
169 |
-
value="", visible=False, elem_id="pagination-display"
|
170 |
-
)
|
171 |
-
|
172 |
-
with gr.Row():
|
173 |
-
prev_button = gr.Button("Previous", visible=False)
|
174 |
-
next_button = gr.Button("Next", visible=False)
|
175 |
-
|
176 |
return DriasUIElements(
|
177 |
tab=tab,
|
178 |
details_accordion=details_accordion,
|
179 |
examples_hidden=examples_hidden,
|
180 |
examples=examples,
|
|
|
181 |
drias_direct_question=drias_direct_question,
|
182 |
result_text=result_text,
|
183 |
table_names_display=table_names_display,
|
@@ -188,9 +158,6 @@ def create_drias_ui() -> DriasUIElements:
|
|
188 |
drias_display=drias_display,
|
189 |
table_accordion=table_accordion,
|
190 |
drias_table=drias_table,
|
191 |
-
pagination_display=pagination_display,
|
192 |
-
prev_button=prev_button,
|
193 |
-
next_button=next_button
|
194 |
)
|
195 |
|
196 |
|
@@ -210,6 +177,10 @@ def setup_drias_events(ui_elements: DriasUIElements, share_client=None, user_id=
|
|
210 |
lambda x: (gr.Accordion(open=False), gr.Textbox(value=x)),
|
211 |
inputs=[ui_elements["examples_hidden"]],
|
212 |
outputs=[ui_elements["details_accordion"], ui_elements["drias_direct_question"]]
|
|
|
|
|
|
|
|
|
213 |
).then(
|
214 |
ask_drias_query,
|
215 |
inputs=[ui_elements["examples_hidden"], index_state, user_id],
|
@@ -226,25 +197,14 @@ def setup_drias_events(ui_elements: DriasUIElements, share_client=None, user_id=
|
|
226 |
],
|
227 |
).then(
|
228 |
show_results,
|
229 |
-
inputs=[sql_queries_state, dataframes_state, plots_state],
|
230 |
outputs=[
|
231 |
ui_elements["result_text"],
|
232 |
ui_elements["query_accordion"],
|
233 |
ui_elements["table_accordion"],
|
234 |
ui_elements["chart_accordion"],
|
235 |
-
ui_elements["prev_button"],
|
236 |
-
ui_elements["next_button"],
|
237 |
-
ui_elements["pagination_display"],
|
238 |
ui_elements["table_names_display"],
|
239 |
],
|
240 |
-
).then(
|
241 |
-
update_pagination,
|
242 |
-
inputs=[index_state, sql_queries_state],
|
243 |
-
outputs=[ui_elements["pagination_display"]],
|
244 |
-
).then(
|
245 |
-
display_table_names,
|
246 |
-
inputs=[table_names_list],
|
247 |
-
outputs=[ui_elements["table_names_display"]],
|
248 |
)
|
249 |
|
250 |
# Handle direct question submission
|
@@ -252,6 +212,10 @@ def setup_drias_events(ui_elements: DriasUIElements, share_client=None, user_id=
|
|
252 |
lambda: gr.Accordion(open=False),
|
253 |
inputs=None,
|
254 |
outputs=[ui_elements["details_accordion"]]
|
|
|
|
|
|
|
|
|
255 |
).then(
|
256 |
ask_drias_query,
|
257 |
inputs=[ui_elements["drias_direct_question"], index_state, user_id],
|
@@ -268,27 +232,15 @@ def setup_drias_events(ui_elements: DriasUIElements, share_client=None, user_id=
|
|
268 |
],
|
269 |
).then(
|
270 |
show_results,
|
271 |
-
inputs=[sql_queries_state, dataframes_state, plots_state],
|
272 |
outputs=[
|
273 |
ui_elements["result_text"],
|
274 |
ui_elements["query_accordion"],
|
275 |
ui_elements["table_accordion"],
|
276 |
ui_elements["chart_accordion"],
|
277 |
-
ui_elements["prev_button"],
|
278 |
-
ui_elements["next_button"],
|
279 |
-
ui_elements["pagination_display"],
|
280 |
ui_elements["table_names_display"],
|
281 |
],
|
282 |
-
).then(
|
283 |
-
update_pagination,
|
284 |
-
inputs=[index_state, sql_queries_state],
|
285 |
-
outputs=[ui_elements["pagination_display"]],
|
286 |
-
).then(
|
287 |
-
display_table_names,
|
288 |
-
inputs=[table_names_list],
|
289 |
-
outputs=[ui_elements["table_names_display"]],
|
290 |
)
|
291 |
-
|
292 |
# Handle model selection change
|
293 |
ui_elements["model_selection"].change(
|
294 |
filter_by_model,
|
@@ -296,36 +248,12 @@ def setup_drias_events(ui_elements: DriasUIElements, share_client=None, user_id=
|
|
296 |
outputs=[ui_elements["drias_table"], ui_elements["drias_display"]],
|
297 |
)
|
298 |
|
299 |
-
# Handle pagination buttons
|
300 |
-
ui_elements["prev_button"].click(
|
301 |
-
show_previous,
|
302 |
-
inputs=[index_state, sql_queries_state, dataframes_state, plots_state],
|
303 |
-
outputs=[ui_elements["drias_sql_query"], ui_elements["drias_table"], ui_elements["drias_display"], index_state],
|
304 |
-
).then(
|
305 |
-
update_pagination,
|
306 |
-
inputs=[index_state, sql_queries_state],
|
307 |
-
outputs=[ui_elements["pagination_display"]],
|
308 |
-
)
|
309 |
-
|
310 |
-
ui_elements["next_button"].click(
|
311 |
-
show_next,
|
312 |
-
inputs=[index_state, sql_queries_state, dataframes_state, plots_state],
|
313 |
-
outputs=[ui_elements["drias_sql_query"], ui_elements["drias_table"], ui_elements["drias_display"], index_state],
|
314 |
-
).then(
|
315 |
-
update_pagination,
|
316 |
-
inputs=[index_state, sql_queries_state],
|
317 |
-
outputs=[ui_elements["pagination_display"]],
|
318 |
-
)
|
319 |
|
320 |
# Handle table selection
|
321 |
-
ui_elements["table_names_display"].
|
322 |
fn=on_table_click,
|
323 |
-
inputs=[table_names_list, sql_queries_state, dataframes_state, plots_state],
|
324 |
outputs=[ui_elements["drias_sql_query"], ui_elements["drias_table"], ui_elements["drias_display"], index_state],
|
325 |
-
).then(
|
326 |
-
update_pagination,
|
327 |
-
inputs=[index_state, sql_queries_state],
|
328 |
-
outputs=[ui_elements["pagination_display"]],
|
329 |
)
|
330 |
|
331 |
def create_drias_tab(share_client=None, user_id=None):
|
|
|
11 |
details_accordion: gr.Accordion
|
12 |
examples_hidden: gr.Textbox
|
13 |
examples: gr.Examples
|
14 |
+
image_examples: gr.Row
|
15 |
drias_direct_question: gr.Textbox
|
16 |
result_text: gr.Textbox
|
17 |
+
table_names_display: gr.Radio
|
18 |
query_accordion: gr.Accordion
|
19 |
drias_sql_query: gr.Textbox
|
20 |
chart_accordion: gr.Accordion
|
|
|
22 |
drias_display: gr.Plot
|
23 |
table_accordion: gr.Accordion
|
24 |
drias_table: gr.DataFrame
|
|
|
|
|
|
|
25 |
|
26 |
|
27 |
async def ask_drias_query(query: str, index_state: int, user_id: str):
|
|
|
29 |
return result
|
30 |
|
31 |
|
32 |
+
def show_results(sql_queries_state, dataframes_state, plots_state, table_names):
|
33 |
if not sql_queries_state or not dataframes_state or not plots_state:
|
34 |
# If all results are empty, show "No result"
|
35 |
return (
|
|
|
38 |
gr.update(visible=False),
|
39 |
gr.update(visible=False),
|
40 |
gr.update(visible=False),
|
|
|
|
|
|
|
41 |
)
|
42 |
else:
|
43 |
# Show the appropriate components with their data
|
|
|
46 |
gr.update(visible=True),
|
47 |
gr.update(visible=True),
|
48 |
gr.update(visible=True),
|
49 |
+
gr.update(choices=table_names, value=table_names[0], visible=True),
|
|
|
|
|
|
|
50 |
)
|
51 |
|
52 |
|
|
|
64 |
return df, figure
|
65 |
|
66 |
|
67 |
+
def on_table_click(selected_label, table_names, sql_queries, dataframes, plots):
|
68 |
+
index = table_names.index(selected_label)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
figure = plots[index](dataframes[index])
|
70 |
return (
|
71 |
sql_queries[index],
|
|
|
78 |
def create_drias_ui() -> DriasUIElements:
|
79 |
"""Create and return all UI elements for the DRIAS tab."""
|
80 |
with gr.Tab("France - Talk to DRIAS", elem_id="tab-vanna", id=6) as tab:
|
81 |
+
with gr.Accordion(label="❓ How to use?", elem_id="details") as details_accordion:
|
82 |
gr.Markdown(DRIAS_UI_TEXT)
|
83 |
|
84 |
# Add examples for common questions
|
|
|
102 |
elem_id="direct-question",
|
103 |
interactive=True,
|
104 |
)
|
105 |
+
|
106 |
+
|
107 |
+
with gr.Row(visible=True, elem_id="example-img-container") as image_examples:
|
108 |
+
gr.Markdown("### Examples of possible visualizations")
|
109 |
+
|
110 |
+
with gr.Row():
|
111 |
+
gr.Image("./front/assets/talk_to_drias_winter_temp_paris_example.png", label="Evolution of Mean Winter Temperature in Paris", elem_classes=["example-img"])
|
112 |
+
gr.Image("./front/assets/talk_to_drias_annual_temperature_france_example.png", label="Mean Annual Temperature in 2030 in France", elem_classes=["example-img"])
|
113 |
+
gr.Image("./front/assets/talk_to_drias_frequency_remarkable_precipitation_lyon_example.png", label="Frequency of Remarkable Daily Precipitation in Lyon", elem_classes=["example-img"])
|
114 |
|
115 |
result_text = gr.Textbox(
|
116 |
label="", elem_id="no-result-label", interactive=False, visible=True
|
117 |
)
|
118 |
+
|
119 |
+
with gr.Row():
|
120 |
+
table_names_display = gr.Radio(
|
121 |
+
choices=[],
|
122 |
+
label="Relevant figures created",
|
123 |
+
interactive=True,
|
124 |
+
elem_id="table-names",
|
125 |
+
visible=False
|
126 |
)
|
127 |
|
128 |
+
with gr.Accordion(label="SQL Query Used", visible=False) as query_accordion:
|
129 |
+
drias_sql_query = gr.Textbox(
|
130 |
+
label="", elem_id="sql-query", interactive=False
|
131 |
+
)
|
132 |
+
|
133 |
+
|
134 |
with gr.Accordion(label="Chart", visible=False) as chart_accordion:
|
135 |
model_selection = gr.Dropdown(
|
136 |
label="Model", choices=DRIAS_MODELS, value="ALL", interactive=True
|
|
|
142 |
) as table_accordion:
|
143 |
drias_table = gr.DataFrame([], elem_id="vanna-table")
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
return DriasUIElements(
|
146 |
tab=tab,
|
147 |
details_accordion=details_accordion,
|
148 |
examples_hidden=examples_hidden,
|
149 |
examples=examples,
|
150 |
+
image_examples=image_examples,
|
151 |
drias_direct_question=drias_direct_question,
|
152 |
result_text=result_text,
|
153 |
table_names_display=table_names_display,
|
|
|
158 |
drias_display=drias_display,
|
159 |
table_accordion=table_accordion,
|
160 |
drias_table=drias_table,
|
|
|
|
|
|
|
161 |
)
|
162 |
|
163 |
|
|
|
177 |
lambda x: (gr.Accordion(open=False), gr.Textbox(value=x)),
|
178 |
inputs=[ui_elements["examples_hidden"]],
|
179 |
outputs=[ui_elements["details_accordion"], ui_elements["drias_direct_question"]]
|
180 |
+
).then(
|
181 |
+
lambda : gr.update(visible=False),
|
182 |
+
inputs=None,
|
183 |
+
outputs=ui_elements["image_examples"]
|
184 |
).then(
|
185 |
ask_drias_query,
|
186 |
inputs=[ui_elements["examples_hidden"], index_state, user_id],
|
|
|
197 |
],
|
198 |
).then(
|
199 |
show_results,
|
200 |
+
inputs=[sql_queries_state, dataframes_state, plots_state, table_names_list],
|
201 |
outputs=[
|
202 |
ui_elements["result_text"],
|
203 |
ui_elements["query_accordion"],
|
204 |
ui_elements["table_accordion"],
|
205 |
ui_elements["chart_accordion"],
|
|
|
|
|
|
|
206 |
ui_elements["table_names_display"],
|
207 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
)
|
209 |
|
210 |
# Handle direct question submission
|
|
|
212 |
lambda: gr.Accordion(open=False),
|
213 |
inputs=None,
|
214 |
outputs=[ui_elements["details_accordion"]]
|
215 |
+
).then(
|
216 |
+
lambda : gr.update(visible=False),
|
217 |
+
inputs=None,
|
218 |
+
outputs=ui_elements["image_examples"]
|
219 |
).then(
|
220 |
ask_drias_query,
|
221 |
inputs=[ui_elements["drias_direct_question"], index_state, user_id],
|
|
|
232 |
],
|
233 |
).then(
|
234 |
show_results,
|
235 |
+
inputs=[sql_queries_state, dataframes_state, plots_state, table_names_list],
|
236 |
outputs=[
|
237 |
ui_elements["result_text"],
|
238 |
ui_elements["query_accordion"],
|
239 |
ui_elements["table_accordion"],
|
240 |
ui_elements["chart_accordion"],
|
|
|
|
|
|
|
241 |
ui_elements["table_names_display"],
|
242 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
)
|
|
|
244 |
# Handle model selection change
|
245 |
ui_elements["model_selection"].change(
|
246 |
filter_by_model,
|
|
|
248 |
outputs=[ui_elements["drias_table"], ui_elements["drias_display"]],
|
249 |
)
|
250 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
# Handle table selection
|
253 |
+
ui_elements["table_names_display"].change(
|
254 |
fn=on_table_click,
|
255 |
+
inputs=[ui_elements["table_names_display"], table_names_list, sql_queries_state, dataframes_state, plots_state],
|
256 |
outputs=[ui_elements["drias_sql_query"], ui_elements["drias_table"], ui_elements["drias_display"], index_state],
|
|
|
|
|
|
|
|
|
257 |
)
|
258 |
|
259 |
def create_drias_tab(share_client=None, user_id=None):
|