Add step by step notebooks for drias
Browse files
sandbox/talk_to_data/20250306 - CQA - Drias.ipynb
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"## Import the function in main.py"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": null,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [],
|
15 |
+
"source": [
|
16 |
+
"import sys\n",
|
17 |
+
"import os\n",
|
18 |
+
"sys.path.append(os.path.dirname(os.path.dirname(os.getcwd())))\n",
|
19 |
+
"\n",
|
20 |
+
"%load_ext autoreload\n",
|
21 |
+
"%autoreload 2\n",
|
22 |
+
"\n",
|
23 |
+
"from climateqa.engine.talk_to_data.main import ask_vanna\n"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "markdown",
|
28 |
+
"metadata": {},
|
29 |
+
"source": [
|
30 |
+
"## Create a human query"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "code",
|
35 |
+
"execution_count": null,
|
36 |
+
"metadata": {},
|
37 |
+
"outputs": [],
|
38 |
+
"source": [
|
39 |
+
"query = \"Comment vont évoluer les températures à marseille ?\""
|
40 |
+
]
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"cell_type": "markdown",
|
44 |
+
"metadata": {},
|
45 |
+
"source": [
|
46 |
+
"## Call the function ask vanna, it gives an output of a the sql query and the dataframe of the result (tuple)"
|
47 |
+
]
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"cell_type": "code",
|
51 |
+
"execution_count": null,
|
52 |
+
"metadata": {},
|
53 |
+
"outputs": [],
|
54 |
+
"source": [
|
55 |
+
"sql_query, df, fig = ask_vanna(query)\n",
|
56 |
+
"print(df.head())\n",
|
57 |
+
"fig.show()"
|
58 |
+
]
|
59 |
+
}
|
60 |
+
],
|
61 |
+
"metadata": {
|
62 |
+
"kernelspec": {
|
63 |
+
"display_name": "climateqa",
|
64 |
+
"language": "python",
|
65 |
+
"name": "python3"
|
66 |
+
},
|
67 |
+
"language_info": {
|
68 |
+
"codemirror_mode": {
|
69 |
+
"name": "ipython",
|
70 |
+
"version": 3
|
71 |
+
},
|
72 |
+
"file_extension": ".py",
|
73 |
+
"mimetype": "text/x-python",
|
74 |
+
"name": "python",
|
75 |
+
"nbconvert_exporter": "python",
|
76 |
+
"pygments_lexer": "ipython3",
|
77 |
+
"version": "3.11.9"
|
78 |
+
}
|
79 |
+
},
|
80 |
+
"nbformat": 4,
|
81 |
+
"nbformat_minor": 2
|
82 |
+
}
|
sandbox/talk_to_data/20250306 - CQA - Step_by_step_vanna.ipynb
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import sys\n",
|
10 |
+
"import os\n",
|
11 |
+
"sys.path.append(os.path.dirname(os.path.dirname(os.getcwd())))\n",
|
12 |
+
"\n",
|
13 |
+
"%load_ext autoreload\n",
|
14 |
+
"%autoreload 2\n",
|
15 |
+
"\n",
|
16 |
+
"from climateqa.engine.talk_to_data.main import ask_vanna\n",
|
17 |
+
"\n",
|
18 |
+
"import sqlite3\n",
|
19 |
+
"import os\n",
|
20 |
+
"import pandas as pd"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "markdown",
|
25 |
+
"metadata": {},
|
26 |
+
"source": [
|
27 |
+
"# Imports"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "code",
|
32 |
+
"execution_count": null,
|
33 |
+
"metadata": {},
|
34 |
+
"outputs": [],
|
35 |
+
"source": [
|
36 |
+
"from climateqa.engine.talk_to_data.myVanna import MyVanna\n",
|
37 |
+
"from climateqa.engine.talk_to_data.utils import loc2coords, detect_location_with_openai, detectTable, nearestNeighbourSQL, detect_relevant_tables, replace_coordonates#,nearestNeighbourPostgres\n",
|
38 |
+
"\n",
|
39 |
+
"from climateqa.engine.llm import get_llm"
|
40 |
+
]
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"cell_type": "markdown",
|
44 |
+
"metadata": {},
|
45 |
+
"source": [
|
46 |
+
"# Vanna Ask\n"
|
47 |
+
]
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"cell_type": "code",
|
51 |
+
"execution_count": null,
|
52 |
+
"metadata": {},
|
53 |
+
"outputs": [],
|
54 |
+
"source": [
|
55 |
+
"from dotenv import load_dotenv\n",
|
56 |
+
"\n",
|
57 |
+
"load_dotenv()\n",
|
58 |
+
"\n",
|
59 |
+
"llm = get_llm(provider=\"openai\")\n",
|
60 |
+
"\n",
|
61 |
+
"OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')\n",
|
62 |
+
"PC_API_KEY = os.getenv('VANNA_PINECONE_API_KEY')\n",
|
63 |
+
"INDEX_NAME = os.getenv('VANNA_INDEX_NAME')\n",
|
64 |
+
"VANNA_MODEL = os.getenv('VANNA_MODEL')\n",
|
65 |
+
"\n",
|
66 |
+
"ROOT_PATH = os.path.dirname(os.path.dirname(os.getcwd()))\n",
|
67 |
+
"\n",
|
68 |
+
"#Vanna object\n",
|
69 |
+
"vn = MyVanna(config = {\"temperature\": 0, \"api_key\": OPENAI_API_KEY, 'model': VANNA_MODEL, 'pc_api_key': PC_API_KEY, 'index_name': INDEX_NAME, \"top_k\" : 4})\n",
|
70 |
+
"\n",
|
71 |
+
"db_vanna_path = ROOT_PATH + \"/data/drias/drias.db\"\n",
|
72 |
+
"vn.connect_to_sqlite(db_vanna_path)\n"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"cell_type": "markdown",
|
77 |
+
"metadata": {},
|
78 |
+
"source": [
|
79 |
+
"# User query"
|
80 |
+
]
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"cell_type": "code",
|
84 |
+
"execution_count": null,
|
85 |
+
"metadata": {},
|
86 |
+
"outputs": [],
|
87 |
+
"source": [
|
88 |
+
"query = \"Quelle sera la température à Marseille sur les prochaines années ?\""
|
89 |
+
]
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"cell_type": "markdown",
|
93 |
+
"metadata": {},
|
94 |
+
"source": [
|
95 |
+
"## Detect location"
|
96 |
+
]
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"cell_type": "code",
|
100 |
+
"execution_count": null,
|
101 |
+
"metadata": {},
|
102 |
+
"outputs": [],
|
103 |
+
"source": [
|
104 |
+
"location = detect_location_with_openai(OPENAI_API_KEY, query)\n",
|
105 |
+
"print(location)"
|
106 |
+
]
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"cell_type": "markdown",
|
110 |
+
"metadata": {},
|
111 |
+
"source": [
|
112 |
+
"## Convert location to longitude, latitude coordonate"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"cell_type": "code",
|
117 |
+
"execution_count": null,
|
118 |
+
"metadata": {},
|
119 |
+
"outputs": [],
|
120 |
+
"source": [
|
121 |
+
"coords = loc2coords(location)\n",
|
122 |
+
"user_input = query.lower().replace(location.lower(), f\"lat, long : {coords}\")\n",
|
123 |
+
"print(user_input)"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"cell_type": "markdown",
|
128 |
+
"metadata": {},
|
129 |
+
"source": [
|
130 |
+
"# Find closest coordonates and replace lat,lon\n"
|
131 |
+
]
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"cell_type": "code",
|
135 |
+
"execution_count": null,
|
136 |
+
"metadata": {},
|
137 |
+
"outputs": [],
|
138 |
+
"source": [
|
139 |
+
"relevant_tables = detect_relevant_tables(user_input, llm) \n",
|
140 |
+
"coords_tables = [nearestNeighbourSQL(db_vanna_path, coords, relevant_tables[i]) for i in range(len(relevant_tables))]\n",
|
141 |
+
"user_input_with_coords = replace_coordonates(coords, user_input, coords_tables)\n",
|
142 |
+
"print(user_input_with_coords)"
|
143 |
+
]
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"cell_type": "markdown",
|
147 |
+
"metadata": {},
|
148 |
+
"source": [
|
149 |
+
"# Ask Vanna with correct coordonates"
|
150 |
+
]
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"cell_type": "code",
|
154 |
+
"execution_count": null,
|
155 |
+
"metadata": {},
|
156 |
+
"outputs": [],
|
157 |
+
"source": [
|
158 |
+
"user_input_with_coords"
|
159 |
+
]
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"cell_type": "code",
|
163 |
+
"execution_count": null,
|
164 |
+
"metadata": {},
|
165 |
+
"outputs": [],
|
166 |
+
"source": [
|
167 |
+
"sql_query, result_dataframe, figure = vn.ask(user_input_with_coords, print_results=False, allow_llm_to_see_data=True, auto_train=False)\n",
|
168 |
+
"print(result_dataframe.head())"
|
169 |
+
]
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"cell_type": "code",
|
173 |
+
"execution_count": null,
|
174 |
+
"metadata": {},
|
175 |
+
"outputs": [],
|
176 |
+
"source": [
|
177 |
+
"result_dataframe"
|
178 |
+
]
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"cell_type": "code",
|
182 |
+
"execution_count": null,
|
183 |
+
"metadata": {},
|
184 |
+
"outputs": [],
|
185 |
+
"source": [
|
186 |
+
"figure"
|
187 |
+
]
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"cell_type": "code",
|
191 |
+
"execution_count": null,
|
192 |
+
"metadata": {},
|
193 |
+
"outputs": [],
|
194 |
+
"source": []
|
195 |
+
}
|
196 |
+
],
|
197 |
+
"metadata": {
|
198 |
+
"kernelspec": {
|
199 |
+
"display_name": "climateqa",
|
200 |
+
"language": "python",
|
201 |
+
"name": "python3"
|
202 |
+
},
|
203 |
+
"language_info": {
|
204 |
+
"codemirror_mode": {
|
205 |
+
"name": "ipython",
|
206 |
+
"version": 3
|
207 |
+
},
|
208 |
+
"file_extension": ".py",
|
209 |
+
"mimetype": "text/x-python",
|
210 |
+
"name": "python",
|
211 |
+
"nbconvert_exporter": "python",
|
212 |
+
"pygments_lexer": "ipython3",
|
213 |
+
"version": "3.11.9"
|
214 |
+
}
|
215 |
+
},
|
216 |
+
"nbformat": 4,
|
217 |
+
"nbformat_minor": 2
|
218 |
+
}
|