Eshieh2 commited on
Commit
fa24e34
·
1 Parent(s): e4b6430

update for newer versions of gradio and the update model

Browse files
Files changed (5) hide show
  1. app.py +14 -7
  2. guaraci.jpg +0 -0
  3. kasimir.jpg +0 -0
  4. labels.txt +17 -2
  5. test.jpg +0 -0
app.py CHANGED
@@ -2,21 +2,28 @@ import gradio as gr
2
  import tensorflow as tf
3
  import numpy as np
4
  import requests
 
5
 
6
- labels = ["missing"] * 36
 
7
  with open('labels.txt','r') as f:
8
  labels = f.read().splitlines()
9
 
 
 
 
 
10
  def classify_image(inp):
11
- model = tf.keras.models.load_model('saved_model')
12
  inp = inp.resize((480,480))
13
  inp = np.array(inp)
14
  inp = np.reshape(inp,(-1, 480, 480, 3)).astype(np.float32)
15
  inp = np.divide(inp,255.0)
16
- prediction = model.predict(inp).flatten()
17
- return {labels[i]: float(prediction[i]) for i in range(36)}
 
 
18
 
19
- image = gr.inputs.Image(type='pil')
20
- label = gr.outputs.Label(num_top_classes=3)
21
 
22
- gr.Interface(fn=classify_image, inputs=image, outputs=label, capture_session=True, theme = "grass", examples = [["test.jpg"]]).launch()
 
2
  import tensorflow as tf
3
  import numpy as np
4
  import requests
5
+ from huggingface_hub import snapshot_download
6
 
7
+ label_count = 51
8
+ labels = ["missing"] * label_count
9
  with open('labels.txt','r') as f:
10
  labels = f.read().splitlines()
11
 
12
+ model_path = extractor_path = snapshot_download(repo_id="eshieh2/jaguarid_pantanal")
13
+ model = tf.saved_model.load(f"{model_path}/saved_model")
14
+ serving = model.signatures['serving_default']
15
+ #model = tf.keras.models.load_model(f"{model_path}/saved_model")
16
  def classify_image(inp):
 
17
  inp = inp.resize((480,480))
18
  inp = np.array(inp)
19
  inp = np.reshape(inp,(-1, 480, 480, 3)).astype(np.float32)
20
  inp = np.divide(inp,255.0)
21
+ #prediction = model.predict(inp).flatten()
22
+ prediction = serving(tf.convert_to_tensor(inp))['model']
23
+ prediction = tf.squeeze(prediction)
24
+ return {labels[i]: float(prediction[i]) for i in range(label_count)}
25
 
26
+ image = gr.Image(type='pil')
27
+ label = gr.Label(num_top_classes=3)
28
 
29
+ gr.Interface(fn=classify_image, inputs=image, outputs=label, examples = [["kasimir.jpg","guaraci.jpg"]]).launch()
guaraci.jpg ADDED
kasimir.jpg ADDED
labels.txt CHANGED
@@ -9,7 +9,7 @@ Courtney
9
  Donal
10
  Estella
11
  Forasteiro
12
- Guarassi
13
  Hero
14
  Ibaca
15
  Inca
@@ -33,4 +33,19 @@ Tomas
33
  Tusk
34
  Xando
35
  Xingu
36
- unknown
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  Donal
10
  Estella
11
  Forasteiro
12
+ Guaraci
13
  Hero
14
  Ibaca
15
  Inca
 
33
  Tusk
34
  Xando
35
  Xingu
36
+ negative
37
+ Antares
38
+ Carvarinha
39
+ Kyyaverá
40
+ Ousado
41
+ aju
42
+ brady
43
+ branco
44
+ buraca
45
+ xingua
46
+ alira
47
+ chevo
48
+ acerola
49
+ nusa
50
+ surya
51
+
test.jpg DELETED
Binary file (9.8 kB)