|
import gradio as gr |
|
from gradio_rangeslider import RangeSlider |
|
|
|
import core as core |
|
from style import CSS, LANG_SYMBOLS, T_SYMBOLS, TITLE |
|
|
|
|
|
def create_model_controls(): |
|
with gr.Row(): |
|
with gr.Column(): |
|
model_types = gr.CheckboxGroup( |
|
label="Select model type", |
|
choices=[ |
|
( |
|
f"Pretrained {T_SYMBOLS['pretrained']}", |
|
T_SYMBOLS["pretrained"], |
|
), |
|
(f"Chat {T_SYMBOLS['chat']}", T_SYMBOLS["chat"]), |
|
], |
|
value=list(T_SYMBOLS.values()), |
|
) |
|
with gr.Column(): |
|
model_sizes = RangeSlider(minimum=0, maximum=150, value=(7, 8), |
|
label="Select the number of parameters (B)") |
|
return model_types, model_sizes |
|
|
|
|
|
def create_language_controls(lang_choices): |
|
with gr.Row(): |
|
langs_bar = gr.CheckboxGroup( |
|
choices=[(LANG_SYMBOLS.get(l, l), l) for l in lang_choices], |
|
value=lang_choices, |
|
label="Select languages to average over", |
|
elem_id="column-select", |
|
interactive=True, |
|
scale=6, |
|
) |
|
with gr.Column(scale=1): |
|
clear = gr.ClearButton( |
|
langs_bar, |
|
value="Deselect all languages", |
|
size="sm", |
|
scale=1, |
|
) |
|
select = gr.Button( |
|
value="Select all languages", |
|
size="sm", |
|
scale=1, |
|
) |
|
select.click( |
|
lambda: gr.CheckboxGroup(value=lang_choices), |
|
inputs=[], |
|
outputs=langs_bar, |
|
) |
|
return langs_bar |
|
|
|
|
|
def create_task_controls(tab_id): |
|
with gr.Row(): |
|
shown_tasks = gr.CheckboxGroup( |
|
choices=core.get_available_task_groups(core.get_selected_task_type(tab_id), True), |
|
value=core.get_available_task_groups(core.get_selected_task_type(tab_id), True), |
|
label="Select tasks to show", |
|
elem_id="column-select", |
|
interactive=True, |
|
scale=50, |
|
) |
|
clear = gr.ClearButton( |
|
shown_tasks, |
|
value="Deselect all tasks", |
|
size="sm", |
|
scale=1, |
|
) |
|
select = gr.Button( |
|
value="Select all tasks", |
|
size="sm", |
|
scale=1, |
|
) |
|
select.click( |
|
lambda: gr.CheckboxGroup( |
|
value=core.get_available_task_groups(core.get_selected_task_type(tab_id), True)), |
|
inputs=[], |
|
outputs=shown_tasks, |
|
) |
|
return shown_tasks |
|
|
|
|
|
theme = gr.themes.Default( |
|
primary_hue="blue", |
|
).set( |
|
button_border_width='*block_border_width' |
|
) |
|
|
|
demo = gr.Blocks(css=CSS, theme=theme) |
|
with demo: |
|
gr.HTML(TITLE) |
|
gr.Markdown( |
|
"This is a collection of multilingual evaluation results obtained using our fork of the LM-evaluation-harness (https://github.com/OpenGPTX/lm-evaluation-harness), based on V1 of the https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard.\ |
|
Note that currently, benchmarks are available in 21 European languages (Irish, Maltese, Croatian missing).", |
|
elem_classes="markdown-text", |
|
) |
|
|
|
selected_tab = gr.State(value=0) |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem( |
|
"π
LLM accuracy benchmark", |
|
elem_id="llm-benchmark-tab-table-acc", |
|
id=0, |
|
) as acc: |
|
with gr.Column(): |
|
with gr.Row(): |
|
search_bar = gr.Textbox( |
|
label="Search models", |
|
placeholder=" π Separate multiple queries with ';' and press ENTER...", |
|
show_label=True, |
|
elem_id="search-bar", |
|
) |
|
|
|
model_types, model_sizes = create_model_controls() |
|
langs_bar = create_language_controls(core.languages_list) |
|
shown_tasks = create_task_controls(0) |
|
|
|
leaderboard_table = gr.Dataframe(datatype=["str", "markdown", "number"]) |
|
|
|
with gr.TabItem( |
|
"π
LLM accuracy benchmark (Zero-Shot)", |
|
elem_id="llm-benchmark-tab-table-acc-zeroshot", |
|
id=3, |
|
) as acc_zero_shot: |
|
with gr.Column(): |
|
with gr.Row(): |
|
search_bar_zero_shot = gr.Textbox( |
|
label="Search models", |
|
placeholder=" π Separate multiple queries with ';' and press ENTER...", |
|
show_label=True, |
|
elem_id="search-bar", |
|
) |
|
|
|
model_types_zero_shot, model_sizes_zero_shot = create_model_controls() |
|
langs_bar_zero_shot = create_language_controls(core.languages_list) |
|
shown_tasks_zero_shot = create_task_controls(1) |
|
leaderboard_table_zero_shot = gr.Dataframe(datatype=["str", "markdown", "number"]) |
|
|
|
with gr.TabItem( |
|
"π LLM translation benchmark", |
|
elem_id="llm-benchmark-tab-table-misc", |
|
id=1, |
|
) as misc: |
|
with gr.Column(): |
|
with gr.Row(): |
|
search_bar_misc = gr.Textbox( |
|
label="Search models", |
|
placeholder=" π Separate multiple queries with ';' and press ENTER...", |
|
show_label=True, |
|
elem_id="search-bar", |
|
) |
|
|
|
model_types_misc, model_sizes_misc = create_model_controls() |
|
langs_bar_misc = create_language_controls(core.languages_list) |
|
shown_tasks_misc = create_task_controls(3) |
|
leaderboard_table_misc = gr.Dataframe(datatype=["str", "markdown", "number"]) |
|
|
|
with gr.TabItem( |
|
"π LLM MT-Bench benchmark", |
|
elem_id="llm-benchmark-tab-table-mtbench", |
|
id=2, |
|
) as mtbench: |
|
with gr.Column(): |
|
with gr.Row(): |
|
search_bar_mtbench = gr.Textbox( |
|
label="Search models", |
|
placeholder=" π Separate multiple queries with ';' and press ENTER...", |
|
show_label=True, |
|
elem_id="search-bar", |
|
) |
|
langs_bar_mtbench = create_language_controls(core.mt_bench_language_list) |
|
leaderboard_table_mtbench = gr.Dataframe(datatype=["str", "markdown", "number"]) |
|
|
|
for comp, fn in [ |
|
(search_bar, "submit"), |
|
(langs_bar, "change"), |
|
(shown_tasks, "change"), |
|
(model_types, "change"), |
|
(model_sizes, "change"), |
|
]: |
|
getattr(comp, fn)( |
|
core.update_df, |
|
[gr.State(value=0), shown_tasks, search_bar, langs_bar, model_sizes, gr.State(value=True), model_types], |
|
leaderboard_table, |
|
) |
|
|
|
for comp, fn in [ |
|
(search_bar_zero_shot, "submit"), |
|
(model_types_zero_shot, "change"), |
|
(langs_bar_zero_shot, "change"), |
|
(shown_tasks_zero_shot, "change"), |
|
(model_sizes_zero_shot, "change") |
|
]: |
|
getattr(comp, fn)( |
|
core.update_df, |
|
[gr.State(value=1), shown_tasks_zero_shot, search_bar_zero_shot, langs_bar_zero_shot, |
|
model_sizes_zero_shot, gr.State(value=False), model_types_zero_shot], |
|
leaderboard_table_zero_shot, |
|
) |
|
|
|
for comp, fn in [ |
|
(search_bar_misc, "submit"), |
|
(langs_bar_misc, "change"), |
|
(shown_tasks_misc, "change"), |
|
(model_types_misc, "change"), |
|
(model_sizes_misc, "change"), |
|
]: |
|
getattr(comp, fn)( |
|
core.update_df, |
|
[gr.State(value=2), shown_tasks_misc, search_bar_misc, langs_bar_misc, model_sizes_misc, |
|
gr.State(value=False), model_types_misc], |
|
leaderboard_table_misc, |
|
) |
|
|
|
for comp, fn in [ |
|
(search_bar_mtbench, "submit"), |
|
(langs_bar_mtbench, "change"), |
|
]: |
|
getattr(comp, fn)( |
|
core.update_df, |
|
[gr.State(value=3), |
|
gr.State(value=core.get_available_task_groups(core.get_selected_task_type(2), False)), |
|
search_bar_mtbench, langs_bar_mtbench, gr.State(value=False)], |
|
leaderboard_table_mtbench, |
|
) |
|
|
|
gr.Blocks.load( |
|
block=demo, |
|
fn=core.update_df, |
|
inputs=[gr.State(value=0), shown_tasks, search_bar, langs_bar, model_sizes, gr.State(value=True), model_types], |
|
outputs=leaderboard_table, |
|
) |
|
|
|
gr.Blocks.load( |
|
block=demo, |
|
fn=core.update_df, |
|
inputs=[gr.State(value=1), shown_tasks_zero_shot, search_bar_zero_shot, langs_bar_zero_shot, |
|
model_sizes_zero_shot, gr.State(value=False), model_types_zero_shot], |
|
outputs=leaderboard_table_zero_shot, |
|
) |
|
|
|
gr.Blocks.load( |
|
block=demo, |
|
fn=core.update_df, |
|
inputs=[gr.State(value=2), shown_tasks_misc, search_bar_misc, langs_bar_misc, model_sizes_misc, |
|
gr.State(value=False), model_types_misc], |
|
outputs=leaderboard_table_misc, |
|
) |
|
|
|
|
|
gr.Blocks.load( |
|
block=demo, |
|
fn=core.update_df, |
|
inputs=[gr.State(value=3), |
|
gr.State(value=core.get_available_task_groups(core.get_selected_task_type(2), False)), |
|
search_bar_mtbench, langs_bar_mtbench, gr.State(value=False)], |
|
outputs=leaderboard_table_mtbench, |
|
) |
|
|
|
demo.launch() |
|
|