refactor(model_links and slider):
Browse files1. Removed the HTML code from core.py
2. Removed the secondary lookup table
3. Now uses the HF database to set up the model meta data.
app.py
CHANGED
@@ -17,9 +17,9 @@ with demo:
|
|
17 |
|
18 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
19 |
with gr.TabItem(
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
) as acc:
|
24 |
with gr.Column():
|
25 |
with gr.Row():
|
@@ -44,8 +44,8 @@ with demo:
|
|
44 |
value=list(T_SYMBOLS.values()),
|
45 |
)
|
46 |
with gr.Column():
|
47 |
-
model_sizes = RangeSlider(minimum=0,maximum=150,value=(7, 10),
|
48 |
-
|
49 |
|
50 |
with gr.Row():
|
51 |
langs_bar = gr.CheckboxGroup(
|
@@ -95,7 +95,8 @@ with demo:
|
|
95 |
scale=1,
|
96 |
)
|
97 |
select.click(
|
98 |
-
lambda: gr.CheckboxGroup(
|
|
|
99 |
inputs=[],
|
100 |
outputs=shown_tasks,
|
101 |
)
|
@@ -104,9 +105,9 @@ with demo:
|
|
104 |
leaderboard_table = gr.Dataframe(datatype=["str", "markdown"], column_widths=[None, "30%"], wrap=False)
|
105 |
|
106 |
with gr.TabItem(
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
) as acc_zero_shot:
|
111 |
with gr.Column():
|
112 |
with gr.Row():
|
@@ -117,7 +118,6 @@ with demo:
|
|
117 |
elem_id="search-bar",
|
118 |
)
|
119 |
|
120 |
-
|
121 |
with gr.Row():
|
122 |
with gr.Column():
|
123 |
model_types_zero_shot = gr.CheckboxGroup(
|
@@ -133,7 +133,7 @@ with demo:
|
|
133 |
)
|
134 |
with gr.Column():
|
135 |
model_sizes_zero_shot = RangeSlider(minimum=0, maximum=150, value=(7, 10),
|
136 |
-
|
137 |
|
138 |
with gr.Row():
|
139 |
langs_bar_zero_shot = gr.CheckboxGroup(
|
@@ -183,16 +183,18 @@ with demo:
|
|
183 |
scale=1,
|
184 |
)
|
185 |
select_zero_shot.click(
|
186 |
-
lambda: gr.CheckboxGroup(
|
|
|
187 |
inputs=[],
|
188 |
outputs=shown_tasks_zero_shot,
|
189 |
)
|
190 |
-
leaderboard_table_zero_shot = gr.Dataframe(datatype=["str", "markdown"], column_widths=[None, "30%"],
|
|
|
191 |
|
192 |
with gr.TabItem(
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
) as misc:
|
197 |
with gr.Column():
|
198 |
with gr.Row():
|
@@ -218,8 +220,7 @@ with demo:
|
|
218 |
)
|
219 |
with gr.Column():
|
220 |
model_sizes_misc = RangeSlider(minimum=0, maximum=150, value=(7, 10),
|
221 |
-
|
222 |
-
|
223 |
|
224 |
with gr.Row():
|
225 |
langs_bar_misc = gr.CheckboxGroup(
|
@@ -269,7 +270,8 @@ with demo:
|
|
269 |
scale=1,
|
270 |
)
|
271 |
select_all_tasks_misc.click(
|
272 |
-
lambda: gr.CheckboxGroup(
|
|
|
273 |
inputs=[],
|
274 |
outputs=shown_tasks_misc,
|
275 |
)
|
@@ -277,9 +279,9 @@ with demo:
|
|
277 |
leaderboard_table_misc = gr.Dataframe(datatype=["str", "markdown"], column_widths=[None, "30%"], wrap=False)
|
278 |
|
279 |
with gr.TabItem(
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
) as mtbench:
|
284 |
with gr.Column():
|
285 |
with gr.Row():
|
@@ -317,7 +319,8 @@ with demo:
|
|
317 |
outputs=langs_bar_mtbench,
|
318 |
)
|
319 |
|
320 |
-
leaderboard_table_mtbench = gr.Dataframe(datatype=["str", "markdown"], column_widths=[None, "60%"],
|
|
|
321 |
|
322 |
for comp, fn in [
|
323 |
(search_bar, "submit"),
|
@@ -342,7 +345,8 @@ with demo:
|
|
342 |
]:
|
343 |
getattr(comp, fn)(
|
344 |
core.update_df,
|
345 |
-
[shown_tasks_zero_shot, search_bar_zero_shot, langs_bar_zero_shot, model_types_zero_shot,
|
|
|
346 |
leaderboard_table_zero_shot,
|
347 |
)
|
348 |
|
@@ -355,7 +359,8 @@ with demo:
|
|
355 |
]:
|
356 |
getattr(comp, fn)(
|
357 |
core.update_df,
|
358 |
-
[shown_tasks_misc, search_bar_misc, langs_bar_misc, model_types_misc, model_sizes_misc,
|
|
|
359 |
leaderboard_table_misc,
|
360 |
)
|
361 |
|
@@ -365,7 +370,9 @@ with demo:
|
|
365 |
]:
|
366 |
getattr(comp, fn)(
|
367 |
core.update_df,
|
368 |
-
[gr.State(value=core.get_available_task_groups(core.get_selected_task_type(2), False)),
|
|
|
|
|
369 |
leaderboard_table_mtbench,
|
370 |
)
|
371 |
|
@@ -380,21 +387,24 @@ with demo:
|
|
380 |
gr.Blocks.load(
|
381 |
block=demo,
|
382 |
fn=core.update_df,
|
383 |
-
inputs=[shown_tasks_zero_shot, search_bar_zero_shot, langs_bar_zero_shot, model_types_zero_shot,
|
|
|
384 |
outputs=leaderboard_table_zero_shot,
|
385 |
)
|
386 |
|
387 |
gr.Blocks.load(
|
388 |
block=demo,
|
389 |
fn=core.update_df,
|
390 |
-
inputs=[shown_tasks_misc, search_bar_misc, langs_bar_misc, model_types_misc, model_sizes_misc,
|
|
|
391 |
outputs=leaderboard_table_misc,
|
392 |
)
|
393 |
|
394 |
gr.Blocks.load(
|
395 |
block=demo,
|
396 |
fn=core.update_df,
|
397 |
-
inputs=[gr.State(value=core.get_available_task_groups(core.get_selected_task_type(2), False)),
|
|
|
398 |
outputs=leaderboard_table_mtbench,
|
399 |
)
|
400 |
|
|
|
17 |
|
18 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
19 |
with gr.TabItem(
|
20 |
+
"π
LLM accuracy benchmark",
|
21 |
+
elem_id="llm-benchmark-tab-table-acc",
|
22 |
+
id=0,
|
23 |
) as acc:
|
24 |
with gr.Column():
|
25 |
with gr.Row():
|
|
|
44 |
value=list(T_SYMBOLS.values()),
|
45 |
)
|
46 |
with gr.Column():
|
47 |
+
model_sizes = RangeSlider(minimum=0, maximum=150, value=(7, 10),
|
48 |
+
label="Select the number of parameters (B)")
|
49 |
|
50 |
with gr.Row():
|
51 |
langs_bar = gr.CheckboxGroup(
|
|
|
95 |
scale=1,
|
96 |
)
|
97 |
select.click(
|
98 |
+
lambda: gr.CheckboxGroup(
|
99 |
+
value=core.get_available_task_groups(core.get_selected_task_type(0), True)),
|
100 |
inputs=[],
|
101 |
outputs=shown_tasks,
|
102 |
)
|
|
|
105 |
leaderboard_table = gr.Dataframe(datatype=["str", "markdown"], column_widths=[None, "30%"], wrap=False)
|
106 |
|
107 |
with gr.TabItem(
|
108 |
+
"π
LLM accuracy benchmark (Zero-Shot)",
|
109 |
+
elem_id="llm-benchmark-tab-table-acc-zeroshot",
|
110 |
+
id=3,
|
111 |
) as acc_zero_shot:
|
112 |
with gr.Column():
|
113 |
with gr.Row():
|
|
|
118 |
elem_id="search-bar",
|
119 |
)
|
120 |
|
|
|
121 |
with gr.Row():
|
122 |
with gr.Column():
|
123 |
model_types_zero_shot = gr.CheckboxGroup(
|
|
|
133 |
)
|
134 |
with gr.Column():
|
135 |
model_sizes_zero_shot = RangeSlider(minimum=0, maximum=150, value=(7, 10),
|
136 |
+
label="Select the number of parameters (B)")
|
137 |
|
138 |
with gr.Row():
|
139 |
langs_bar_zero_shot = gr.CheckboxGroup(
|
|
|
183 |
scale=1,
|
184 |
)
|
185 |
select_zero_shot.click(
|
186 |
+
lambda: gr.CheckboxGroup(
|
187 |
+
value=core.get_available_task_groups(core.get_selected_task_type(3), False)),
|
188 |
inputs=[],
|
189 |
outputs=shown_tasks_zero_shot,
|
190 |
)
|
191 |
+
leaderboard_table_zero_shot = gr.Dataframe(datatype=["str", "markdown"], column_widths=[None, "30%"],
|
192 |
+
wrap=False)
|
193 |
|
194 |
with gr.TabItem(
|
195 |
+
"π LLM translation benchmark",
|
196 |
+
elem_id="llm-benchmark-tab-table-misc",
|
197 |
+
id=1,
|
198 |
) as misc:
|
199 |
with gr.Column():
|
200 |
with gr.Row():
|
|
|
220 |
)
|
221 |
with gr.Column():
|
222 |
model_sizes_misc = RangeSlider(minimum=0, maximum=150, value=(7, 10),
|
223 |
+
label="Select the number of parameters (B)")
|
|
|
224 |
|
225 |
with gr.Row():
|
226 |
langs_bar_misc = gr.CheckboxGroup(
|
|
|
270 |
scale=1,
|
271 |
)
|
272 |
select_all_tasks_misc.click(
|
273 |
+
lambda: gr.CheckboxGroup(
|
274 |
+
value=core.get_available_task_groups(core.get_selected_task_type(1), False)),
|
275 |
inputs=[],
|
276 |
outputs=shown_tasks_misc,
|
277 |
)
|
|
|
279 |
leaderboard_table_misc = gr.Dataframe(datatype=["str", "markdown"], column_widths=[None, "30%"], wrap=False)
|
280 |
|
281 |
with gr.TabItem(
|
282 |
+
"π LLM MT-Bench benchmark",
|
283 |
+
elem_id="llm-benchmark-tab-table-mtbench",
|
284 |
+
id=2,
|
285 |
) as mtbench:
|
286 |
with gr.Column():
|
287 |
with gr.Row():
|
|
|
319 |
outputs=langs_bar_mtbench,
|
320 |
)
|
321 |
|
322 |
+
leaderboard_table_mtbench = gr.Dataframe(datatype=["str", "markdown"], column_widths=[None, "60%"],
|
323 |
+
wrap=False)
|
324 |
|
325 |
for comp, fn in [
|
326 |
(search_bar, "submit"),
|
|
|
345 |
]:
|
346 |
getattr(comp, fn)(
|
347 |
core.update_df,
|
348 |
+
[shown_tasks_zero_shot, search_bar_zero_shot, langs_bar_zero_shot, model_types_zero_shot,
|
349 |
+
model_sizes_zero_shot, gr.State(value=False)],
|
350 |
leaderboard_table_zero_shot,
|
351 |
)
|
352 |
|
|
|
359 |
]:
|
360 |
getattr(comp, fn)(
|
361 |
core.update_df,
|
362 |
+
[shown_tasks_misc, search_bar_misc, langs_bar_misc, model_types_misc, model_sizes_misc,
|
363 |
+
gr.State(value=False)],
|
364 |
leaderboard_table_misc,
|
365 |
)
|
366 |
|
|
|
370 |
]:
|
371 |
getattr(comp, fn)(
|
372 |
core.update_df,
|
373 |
+
[gr.State(value=core.get_available_task_groups(core.get_selected_task_type(2), False)),
|
374 |
+
search_bar_mtbench, langs_bar_mtbench, gr.State(value=[T_SYMBOLS["chat"]]), gr.State(value=False)],
|
375 |
+
# TODO
|
376 |
leaderboard_table_mtbench,
|
377 |
)
|
378 |
|
|
|
387 |
gr.Blocks.load(
|
388 |
block=demo,
|
389 |
fn=core.update_df,
|
390 |
+
inputs=[shown_tasks_zero_shot, search_bar_zero_shot, langs_bar_zero_shot, model_types_zero_shot,
|
391 |
+
model_sizes_zero_shot, gr.State(value=False)],
|
392 |
outputs=leaderboard_table_zero_shot,
|
393 |
)
|
394 |
|
395 |
gr.Blocks.load(
|
396 |
block=demo,
|
397 |
fn=core.update_df,
|
398 |
+
inputs=[shown_tasks_misc, search_bar_misc, langs_bar_misc, model_types_misc, model_sizes_misc,
|
399 |
+
gr.State(value=False)],
|
400 |
outputs=leaderboard_table_misc,
|
401 |
)
|
402 |
|
403 |
gr.Blocks.load(
|
404 |
block=demo,
|
405 |
fn=core.update_df,
|
406 |
+
inputs=[gr.State(value=core.get_available_task_groups(core.get_selected_task_type(2), False)),
|
407 |
+
search_bar_mtbench, langs_bar_mtbench, gr.State(value=[T_SYMBOLS["chat"]]), gr.State(value=False)],
|
408 |
outputs=leaderboard_table_mtbench,
|
409 |
)
|
410 |
|
core.py
CHANGED
@@ -4,7 +4,7 @@ import os
|
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
6 |
from datasets import load_dataset
|
7 |
-
from utils import
|
8 |
|
9 |
import style
|
10 |
|
@@ -13,7 +13,7 @@ FEW_SHOT_ONLY = ["GSM8K", "TruthfulQA"]
|
|
13 |
|
14 |
|
15 |
def init():
|
16 |
-
global repo_id, config_name, split_name, hidden_df, task_group_names_list, task_group_type_dict, task_groups_shots_dict, languages_list, model_type_dict, mt_bench_language_list
|
17 |
|
18 |
repo_id = os.getenv("OGX_LEADERBOARD_DATASET_NAME")
|
19 |
config_name = os.getenv("OGX_LEADERBOARD_DATASET_CONFIG")
|
@@ -33,6 +33,14 @@ def init():
|
|
33 |
model_type_df = hidden_df[["Model_Name", "Model_Type"]].drop_duplicates()
|
34 |
model_type_dict = model_type_df.set_index("Model_Name")["Model_Type"].to_dict()
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
hidden_df = hidden_df.pivot_table(
|
37 |
columns=["Task_Group", "Few_Shot", "Language"],
|
38 |
index=["Model_Name"],
|
@@ -43,19 +51,8 @@ def init():
|
|
43 |
hidden_df["Type"] = hidden_df["Model_Name"].apply(lambda x: style.T_SYMBOLS[model_type_dict[x]])
|
44 |
|
45 |
|
46 |
-
def model_hyperlink(link, model_name):
|
47 |
-
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;"> {model_name} </a>'
|
48 |
-
|
49 |
-
|
50 |
-
def make_clickable_model(model_name):
|
51 |
-
link = f"https://huggingface.co/" + model_hf_look_up_table_filter[model_name]['link']
|
52 |
-
return model_hyperlink(link, model_name)
|
53 |
-
|
54 |
-
|
55 |
def sort_cols(df: pd.DataFrame, fewshot: bool = False) -> pd.DataFrame:
|
56 |
task_cols = get_task_columns(df)
|
57 |
-
df['Model_Name'] = df['Model_Name'].apply(
|
58 |
-
lambda x: make_clickable_model(x) if x in model_hf_look_up_table_filter else x)
|
59 |
return df.reindex(["Type", "Model_Name", "Average"] + sorted(task_cols), axis=1)
|
60 |
|
61 |
|
@@ -76,6 +73,13 @@ def filter_type(df: pd.DataFrame, model_types: list[str]) -> pd.DataFrame:
|
|
76 |
return df[df["Type"].isin(model_types)]
|
77 |
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
def search_model(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
80 |
"""Keep only rows for which model name matches search query"""
|
81 |
query = query.replace(";", "|")
|
@@ -134,10 +138,9 @@ def update_df(
|
|
134 |
df = filter_type(df, model_types)
|
135 |
|
136 |
if model_sizes:
|
137 |
-
|
138 |
-
(value.get("model_size") >= model_sizes[0] and value.get("model_size") <= model_sizes[1])]
|
139 |
-
df = df[df['Model_Name'].isin(result)]
|
140 |
|
|
|
141 |
if format:
|
142 |
return sort_cols(df, fewshot).style.format(precision=2, decimal=".", na_rep="N/A")
|
143 |
else:
|
|
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
6 |
from datasets import load_dataset
|
7 |
+
from utils import add_model_hyperlink
|
8 |
|
9 |
import style
|
10 |
|
|
|
13 |
|
14 |
|
15 |
def init():
|
16 |
+
global repo_id, config_name, split_name, hidden_df, task_group_names_list, task_group_type_dict, task_groups_shots_dict, languages_list, model_type_dict, mt_bench_language_list, model_link_dict, model_size_dict
|
17 |
|
18 |
repo_id = os.getenv("OGX_LEADERBOARD_DATASET_NAME")
|
19 |
config_name = os.getenv("OGX_LEADERBOARD_DATASET_CONFIG")
|
|
|
33 |
model_type_df = hidden_df[["Model_Name", "Model_Type"]].drop_duplicates()
|
34 |
model_type_dict = model_type_df.set_index("Model_Name")["Model_Type"].to_dict()
|
35 |
|
36 |
+
model_size_df = hidden_df[["Model_Name", "Model_Size"]].drop_duplicates()
|
37 |
+
model_size_df['Model_Size'] = model_size_df['Model_Size'].fillna(0)
|
38 |
+
model_size_dict = model_size_df.set_index("Model_Name")["Model_Size"].to_dict()
|
39 |
+
|
40 |
+
model_link_df = hidden_df[["Model_Name", "Model_Link"]].drop_duplicates()
|
41 |
+
model_link_df["Model_Link"] = model_link_df["Model_Link"].apply(lambda x: f"https://huggingface.co/" + str(x))
|
42 |
+
model_link_dict = model_link_df.set_index("Model_Name")["Model_Link"].to_dict()
|
43 |
+
|
44 |
hidden_df = hidden_df.pivot_table(
|
45 |
columns=["Task_Group", "Few_Shot", "Language"],
|
46 |
index=["Model_Name"],
|
|
|
51 |
hidden_df["Type"] = hidden_df["Model_Name"].apply(lambda x: style.T_SYMBOLS[model_type_dict[x]])
|
52 |
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
def sort_cols(df: pd.DataFrame, fewshot: bool = False) -> pd.DataFrame:
|
55 |
task_cols = get_task_columns(df)
|
|
|
|
|
56 |
return df.reindex(["Type", "Model_Name", "Average"] + sorted(task_cols), axis=1)
|
57 |
|
58 |
|
|
|
73 |
return df[df["Type"].isin(model_types)]
|
74 |
|
75 |
|
76 |
+
def filter_model_size(df: pd.DataFrame, model_sizes, lookup: dict):
|
77 |
+
filtered_model_size = [model_name for model_name, model_size in lookup.items() if
|
78 |
+
model_sizes[0] <= model_size <= model_sizes[1]]
|
79 |
+
filtered_df = df[df['Model_Name'].isin(filtered_model_size)]
|
80 |
+
return filtered_df
|
81 |
+
|
82 |
+
|
83 |
def search_model(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
84 |
"""Keep only rows for which model name matches search query"""
|
85 |
query = query.replace(";", "|")
|
|
|
138 |
df = filter_type(df, model_types)
|
139 |
|
140 |
if model_sizes:
|
141 |
+
df = filter_model_size(df=df, model_sizes=model_sizes, lookup=model_size_dict)
|
|
|
|
|
142 |
|
143 |
+
df = add_model_hyperlink(df, model_link_dict)
|
144 |
if format:
|
145 |
return sort_cols(df, fewshot).style.format(precision=2, decimal=".", na_rep="N/A")
|
146 |
else:
|
utils.py
CHANGED
@@ -1,193 +1,7 @@
|
|
1 |
-
|
2 |
-
"
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
"model_size": 7,
|
9 |
-
},
|
10 |
-
"Bloomz-7b1": {
|
11 |
-
"link": "bigscience/bloomz-7b1",
|
12 |
-
"model_size": 7,
|
13 |
-
},
|
14 |
-
"Meta-Llama-2-7B": {
|
15 |
-
"link": "meta-llama/Llama-2-7b",
|
16 |
-
"model_size": 7,
|
17 |
-
},
|
18 |
-
"Gemma-7b": {
|
19 |
-
"link": "google/gemma-7b",
|
20 |
-
"model_size": 7,
|
21 |
-
},
|
22 |
-
"Gemma-1.1-7b-Instruct": {
|
23 |
-
"link": "google/gemma-1.1-7b-it",
|
24 |
-
"model_size": 7,
|
25 |
-
},
|
26 |
-
"Meta-Llama-3-8B": {
|
27 |
-
"link": "meta-llama/Meta-Llama-3-8B",
|
28 |
-
"model_size": 8
|
29 |
-
},
|
30 |
-
"Meta-Llama-3-8B-Instruct": {
|
31 |
-
"link": "meta-llama/Meta-Llama-3-8B-Instruct",
|
32 |
-
"model_size": 8
|
33 |
-
},
|
34 |
-
"Mistral-7B-Instruct-v0.3": {
|
35 |
-
"link": "mistralai/Mistral-7B-Instruct-v0.3",
|
36 |
-
"model_size": 7
|
37 |
-
},
|
38 |
-
"Mistral-7B-Instruct-v0.1": {
|
39 |
-
"link": "mistralai/Mistral-7B-Instruct-v0.1",
|
40 |
-
"model_size": 7
|
41 |
-
},
|
42 |
-
"Mistral-7B-Instruct-v0.2": {
|
43 |
-
"link": "mistralai/Mistral-7B-Instruct-v0.2",
|
44 |
-
"model_size": 7
|
45 |
-
},
|
46 |
-
"Mistral-7B-v0.1": {
|
47 |
-
"link": "mistralai/Mistral-7B-v0.1",
|
48 |
-
"model_size": 7
|
49 |
-
},
|
50 |
-
"Mistral-7B-v0.3": {
|
51 |
-
"link": "mistralai/Mistral-7B-v0.3",
|
52 |
-
"model_size": 7
|
53 |
-
},
|
54 |
-
"Occiglot-7b-eu5": {
|
55 |
-
"link": "occiglot/occiglot-7b-eu5",
|
56 |
-
"model_size": 7
|
57 |
-
},
|
58 |
-
"Occiglot-7b-eu5-Instruct": {
|
59 |
-
"link": "occiglot/occiglot-7b-eu5-instruct",
|
60 |
-
"model_size": 7
|
61 |
-
},
|
62 |
-
"Phi-3-mini-4k-Instruct": {
|
63 |
-
"link": "microsoft/Phi-3-mini-4k-instruct",
|
64 |
-
"model_size": 3.8
|
65 |
-
},
|
66 |
-
"Qwen2-7B": {
|
67 |
-
"link": "Qwen/Qwen2-7B-Instruct",
|
68 |
-
"model_size": 7
|
69 |
-
},
|
70 |
-
"Qwen2-7B-Instruct": {
|
71 |
-
"link": "Qwen/Qwen2-7B-Instruct",
|
72 |
-
"model_size": 7
|
73 |
-
},
|
74 |
-
"7B_24EU_2.5T_bactrianx17_bb_ckp1": {
|
75 |
-
"link": "",
|
76 |
-
"model_size": 7
|
77 |
-
},
|
78 |
-
"7B_24EU_2.5T_bactrianx5_bb_ckp1": {
|
79 |
-
"link": "",
|
80 |
-
"model_size": 7
|
81 |
-
},
|
82 |
-
"7B_24EU_2.5T_honey_ckp2701": {
|
83 |
-
"link": "",
|
84 |
-
"model_size": 7
|
85 |
-
},
|
86 |
-
"7B_24EU_2T_bactrianx17_bb_ckp2": {
|
87 |
-
"link": "",
|
88 |
-
"model_size": 7
|
89 |
-
},
|
90 |
-
"7B_24EU_2T_bactrianx5_bb_ckp2": {
|
91 |
-
"link": "",
|
92 |
-
"model_size": 7
|
93 |
-
},
|
94 |
-
"7B_24EU_2.86T_EP5_iter_0681300": {
|
95 |
-
"link": "",
|
96 |
-
"model_size": 7
|
97 |
-
},
|
98 |
-
"7B_24EU_2.86T_iter_0602100": {
|
99 |
-
"link": "",
|
100 |
-
"model_size": 7
|
101 |
-
},
|
102 |
-
"7B_24EU_1.45T_bactrianx17_ckp1": {
|
103 |
-
"link": "",
|
104 |
-
"model_size": 7
|
105 |
-
},
|
106 |
-
"7B_24EU_1.45T_bactrianx17_bb_ckp2": {
|
107 |
-
"link": "",
|
108 |
-
"model_size": 7
|
109 |
-
},
|
110 |
-
"7B_24EU_1.45T_bactrianx5_ckp1": {
|
111 |
-
"link": "",
|
112 |
-
"model_size": 7
|
113 |
-
},
|
114 |
-
"7B_24EU_1.65T_bactrianx17_ckp1": {
|
115 |
-
"link": "",
|
116 |
-
"model_size": 7
|
117 |
-
},
|
118 |
-
"7B_24EU_1.65T_bactrianx17_bb_ckp1": {
|
119 |
-
"link": "",
|
120 |
-
"model_size": 7
|
121 |
-
},
|
122 |
-
"7B_24EU_1.65T_bactrianx5_ckp1": {
|
123 |
-
"link": "",
|
124 |
-
"model_size": 7
|
125 |
-
},
|
126 |
-
"7B_EN_200B_iter_0047683": {
|
127 |
-
"link": "",
|
128 |
-
"model_size": 7
|
129 |
-
},
|
130 |
-
"7B_EQUAL_200B_iter_0046950": {
|
131 |
-
"link": "",
|
132 |
-
"model_size": 7
|
133 |
-
},
|
134 |
-
"7B_EU24_1.1T_iter_0236250": {
|
135 |
-
"link": "",
|
136 |
-
"model_size": 7
|
137 |
-
},
|
138 |
-
"7B_EU24_1.45T_iter_0346050": {
|
139 |
-
"link": "",
|
140 |
-
"model_size": 7
|
141 |
-
},
|
142 |
-
"7B_EU24_1.65T_iter_0393075": {
|
143 |
-
"link": "",
|
144 |
-
"model_size": 7
|
145 |
-
},
|
146 |
-
"7B_EU24_2.5T_DE_213B": {
|
147 |
-
"link": "",
|
148 |
-
"model_size": 7
|
149 |
-
},
|
150 |
-
"7B_EU24_2.5T_DE_262B": {
|
151 |
-
"link": "",
|
152 |
-
"model_size": 7
|
153 |
-
},
|
154 |
-
"7B_EU24_2.5T_iter_0602100": {
|
155 |
-
"link": "",
|
156 |
-
"model_size": 7
|
157 |
-
},
|
158 |
-
"7B_EU24_2T_iter_0477675": {
|
159 |
-
"link": "",
|
160 |
-
"model_size": 7
|
161 |
-
},
|
162 |
-
"7B_EU24_2T_iter_0477900": {
|
163 |
-
"link": "",
|
164 |
-
"model_size": 7
|
165 |
-
},
|
166 |
-
"7B_EU24_2T_iter_0478125": {
|
167 |
-
"link": "",
|
168 |
-
"model_size": 7
|
169 |
-
},
|
170 |
-
"7B_EU24_3T_oscar_iter_0715255": {
|
171 |
-
"link": "",
|
172 |
-
"model_size": 7
|
173 |
-
},
|
174 |
-
"7B_EU24_3T_fw_iter_0715255": {
|
175 |
-
"link": "",
|
176 |
-
"model_size": 7
|
177 |
-
},
|
178 |
-
"7B_EU24_fw_3T_honey_ckp1350": {
|
179 |
-
"link": "",
|
180 |
-
"model_size": 7
|
181 |
-
},
|
182 |
-
"7B_EU24_fw_3.1T_iter_0025875": {
|
183 |
-
"link": "",
|
184 |
-
"model_size": 7
|
185 |
-
},
|
186 |
-
"7B_EU24_1.1T_bactrianx_ckp2": {
|
187 |
-
"link": "",
|
188 |
-
"model_size": 7
|
189 |
-
},
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
}
|
|
|
1 |
+
def add_model_hyperlink(df, lookup):
|
2 |
+
df["Model_Name"] = df["Model_Name"].apply(
|
3 |
+
lambda
|
4 |
+
x: f'<a target="_blank" href="{lookup[x]}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;"> {x} </a>' if
|
5 |
+
x in lookup else x
|
6 |
+
)
|
7 |
+
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|