Alex Jude
KlaudiaTH
commited on
New leaderboard design (#19)
Browse files* MT-BENCH: Model type is now fixed at "chat" for MT-BENCH. Pretrained models are not shown nor can be selected.
* MT-BENCH: Language selection in MT-BENCH tab is limited to EN, DE, ES, FR, IT
* MT-BENCH: Don't select all 22 Languages when "Select all languages" button is pressed in in Mt-Bench tab.
* New Leaderboard Design: New design skeleton
* New Leaderboard Design: Removed unnecessary updates
* New Leaderboard Design: Introduced Zero-Shot tab instead of radio buttons
---------
Co-authored-by: KlaudiaTH <[email protected]>
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
import core as core
|
4 |
-
from style import CSS, LANG_SYMBOLS, T_SYMBOLS, TITLE
|
5 |
|
6 |
demo = gr.Blocks(css=CSS)
|
7 |
with demo:
|
@@ -14,8 +14,12 @@ with demo:
|
|
14 |
|
15 |
selected_tab = gr.State(value=0)
|
16 |
|
17 |
-
with gr.
|
18 |
-
with gr.
|
|
|
|
|
|
|
|
|
19 |
with gr.Column():
|
20 |
with gr.Row():
|
21 |
search_bar = gr.Textbox(
|
@@ -24,7 +28,6 @@ with demo:
|
|
24 |
show_label=True,
|
25 |
elem_id="search-bar",
|
26 |
)
|
27 |
-
|
28 |
model_types = gr.CheckboxGroup(
|
29 |
label="Select model type",
|
30 |
choices=[
|
@@ -36,6 +39,7 @@ with demo:
|
|
36 |
],
|
37 |
value=list(T_SYMBOLS.values()),
|
38 |
)
|
|
|
39 |
with gr.Row():
|
40 |
langs_bar = gr.CheckboxGroup(
|
41 |
choices=[(LANG_SYMBOLS.get(l, l), l) for l in core.languages_list],
|
@@ -52,125 +56,318 @@ with demo:
|
|
52 |
size="sm",
|
53 |
scale=1,
|
54 |
)
|
55 |
-
select = gr.Button(
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
with gr.Row():
|
76 |
-
|
77 |
-
choices=[],
|
78 |
-
value=
|
79 |
-
label="Select
|
80 |
elem_id="column-select",
|
81 |
interactive=True,
|
82 |
-
scale=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
)
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
scale=29,
|
89 |
)
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
id=1,
|
99 |
-
) as misc:
|
100 |
-
leaderboard_table_misc = gr.Dataframe()
|
101 |
-
with gr.TabItem(
|
102 |
-
"๐ LLM MT-Bench benchmark",
|
103 |
-
elem_id="llm-benchmark-tab-table-mtbench",
|
104 |
-
id=2,
|
105 |
-
) as mtbench:
|
106 |
-
leaderboard_table_mtbench = gr.Dataframe()
|
107 |
-
|
108 |
-
demo.load(
|
109 |
-
core.update_task_groups_and_fewshot,
|
110 |
-
[gr.State(value=0), model_types, langs_bar,fewshot],
|
111 |
-
[shown_tasks, fewshot, selected_tab, model_types, langs_bar],
|
112 |
-
)
|
113 |
-
fewshot.change(
|
114 |
-
core.update_task_groups_and_fewshot,
|
115 |
-
[selected_tab, model_types, langs_bar, fewshot],
|
116 |
-
[shown_tasks, fewshot, selected_tab, model_types, langs_bar],
|
117 |
-
)
|
118 |
-
acc.select(
|
119 |
-
core.update_task_groups_and_fewshot,
|
120 |
-
inputs=[gr.State(value=0), model_types, langs_bar, fewshot],
|
121 |
-
outputs=[shown_tasks, fewshot, selected_tab, model_types, langs_bar],
|
122 |
-
)
|
123 |
-
misc.select(
|
124 |
-
core.update_task_groups_and_fewshot,
|
125 |
-
inputs=[gr.State(value=1), model_types, langs_bar, fewshot],
|
126 |
-
outputs=[shown_tasks, fewshot, selected_tab, model_types, langs_bar],
|
127 |
-
)
|
128 |
-
mtbench.select(
|
129 |
-
core.update_task_groups_and_fewshot,
|
130 |
-
inputs=[gr.State(value=2), model_types, langs_bar, fewshot],
|
131 |
-
outputs=[shown_tasks, fewshot, selected_tab, model_types, langs_bar],
|
132 |
-
)
|
133 |
for comp, fn in [
|
134 |
(search_bar, "submit"),
|
135 |
(langs_bar, "change"),
|
136 |
(shown_tasks, "change"),
|
137 |
-
(fewshot, "change"),
|
138 |
(model_types, "change"),
|
139 |
]:
|
140 |
getattr(comp, fn)(
|
141 |
core.update_df,
|
142 |
-
[shown_tasks, search_bar, langs_bar, model_types,
|
143 |
leaderboard_table,
|
144 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
getattr(comp, fn)(
|
146 |
core.update_df,
|
147 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
leaderboard_table_misc,
|
149 |
)
|
|
|
|
|
|
|
|
|
|
|
150 |
getattr(comp, fn)(
|
151 |
core.update_df,
|
152 |
-
[
|
153 |
leaderboard_table_mtbench,
|
154 |
)
|
155 |
|
156 |
gr.Blocks.load(
|
157 |
block=demo,
|
158 |
fn=core.update_df,
|
159 |
-
inputs=[shown_tasks, search_bar, langs_bar, model_types,
|
160 |
outputs=leaderboard_table,
|
161 |
)
|
162 |
|
163 |
gr.Blocks.load(
|
164 |
block=demo,
|
165 |
fn=core.update_df,
|
166 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
outputs=leaderboard_table_misc,
|
168 |
)
|
169 |
|
170 |
gr.Blocks.load(
|
171 |
block=demo,
|
172 |
fn=core.update_df,
|
173 |
-
inputs=[
|
174 |
outputs=leaderboard_table_mtbench,
|
175 |
)
|
176 |
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
import core as core
|
4 |
+
from style import CSS, LANG_SYMBOLS, MT_BENCH_LANG_SYMBOLS, T_SYMBOLS, TITLE
|
5 |
|
6 |
demo = gr.Blocks(css=CSS)
|
7 |
with demo:
|
|
|
14 |
|
15 |
selected_tab = gr.State(value=0)
|
16 |
|
17 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
18 |
+
with gr.TabItem(
|
19 |
+
"๐
LLM accuracy benchmark",
|
20 |
+
elem_id="llm-benchmark-tab-table-acc",
|
21 |
+
id=0,
|
22 |
+
) as acc:
|
23 |
with gr.Column():
|
24 |
with gr.Row():
|
25 |
search_bar = gr.Textbox(
|
|
|
28 |
show_label=True,
|
29 |
elem_id="search-bar",
|
30 |
)
|
|
|
31 |
model_types = gr.CheckboxGroup(
|
32 |
label="Select model type",
|
33 |
choices=[
|
|
|
39 |
],
|
40 |
value=list(T_SYMBOLS.values()),
|
41 |
)
|
42 |
+
|
43 |
with gr.Row():
|
44 |
langs_bar = gr.CheckboxGroup(
|
45 |
choices=[(LANG_SYMBOLS.get(l, l), l) for l in core.languages_list],
|
|
|
56 |
size="sm",
|
57 |
scale=1,
|
58 |
)
|
59 |
+
select = gr.Button(
|
60 |
+
value="Select all languages",
|
61 |
+
size="sm",
|
62 |
+
scale=1,
|
63 |
+
)
|
64 |
+
select.click(
|
65 |
+
lambda: gr.CheckboxGroup(value=core.languages_list),
|
66 |
+
inputs=[],
|
67 |
+
outputs=langs_bar,
|
68 |
+
)
|
69 |
+
|
70 |
+
with gr.Row():
|
71 |
+
shown_tasks = gr.CheckboxGroup(
|
72 |
+
choices=core.get_available_task_groups(core.get_selected_task_type(0), True),
|
73 |
+
value=core.get_available_task_groups(core.get_selected_task_type(0), True),
|
74 |
+
label="Select tasks to show",
|
75 |
+
elem_id="column-select",
|
76 |
+
interactive=True,
|
77 |
+
scale=50,
|
78 |
+
)
|
79 |
+
clear = gr.ClearButton(
|
80 |
+
shown_tasks,
|
81 |
+
value="Deselect all tasks",
|
82 |
+
size="sm",
|
83 |
+
scale=1,
|
84 |
+
)
|
85 |
+
select = gr.Button(
|
86 |
+
value="Select all tasks",
|
87 |
+
size="sm",
|
88 |
+
scale=1,
|
89 |
+
)
|
90 |
+
select.click(
|
91 |
+
lambda: gr.CheckboxGroup(value=core.get_available_task_groups(core.get_selected_task_type(0), True)),
|
92 |
+
inputs=[],
|
93 |
+
outputs=shown_tasks,
|
94 |
+
)
|
95 |
+
leaderboard_table = gr.Dataframe()
|
96 |
+
|
97 |
+
with gr.TabItem(
|
98 |
+
"๐
LLM accuracy benchmark (Zero-Shot)",
|
99 |
+
elem_id="llm-benchmark-tab-table-acc-zeroshot",
|
100 |
+
id=3,
|
101 |
+
) as acc_zero_shot:
|
102 |
+
with gr.Column():
|
103 |
+
with gr.Row():
|
104 |
+
search_bar_zero_shot = gr.Textbox(
|
105 |
+
label="Search models",
|
106 |
+
placeholder=" ๐ Separate multiple queries with ';' and press ENTER...",
|
107 |
+
show_label=True,
|
108 |
+
elem_id="search-bar",
|
109 |
+
)
|
110 |
+
model_types_zero_shot = gr.CheckboxGroup(
|
111 |
+
label="Select model type",
|
112 |
+
choices=[
|
113 |
+
(
|
114 |
+
f"Pretrained {T_SYMBOLS['pretrained']}",
|
115 |
+
T_SYMBOLS["pretrained"],
|
116 |
+
),
|
117 |
+
(f"Chat {T_SYMBOLS['chat']}", T_SYMBOLS["chat"]),
|
118 |
+
],
|
119 |
+
value=list(T_SYMBOLS.values()),
|
120 |
+
)
|
121 |
+
|
122 |
+
with gr.Row():
|
123 |
+
langs_bar_zero_shot = gr.CheckboxGroup(
|
124 |
+
choices=[(LANG_SYMBOLS.get(l, l), l) for l in core.languages_list],
|
125 |
+
value=core.languages_list,
|
126 |
+
label="Select languages to average over",
|
127 |
+
elem_id="column-select",
|
128 |
+
interactive=True,
|
129 |
+
scale=6,
|
130 |
+
)
|
131 |
+
with gr.Column(scale=1):
|
132 |
+
clear_zero_shot = gr.ClearButton(
|
133 |
+
langs_bar_zero_shot,
|
134 |
+
value="Deselect all languages",
|
135 |
+
size="sm",
|
136 |
+
scale=1,
|
137 |
+
)
|
138 |
+
select_zero_shot = gr.Button(
|
139 |
+
value="Select all languages",
|
140 |
+
size="sm",
|
141 |
+
scale=1,
|
142 |
+
)
|
143 |
+
select_zero_shot.click(
|
144 |
+
lambda: gr.CheckboxGroup(value=core.languages_list),
|
145 |
+
inputs=[],
|
146 |
+
outputs=langs_bar_zero_shot,
|
147 |
+
)
|
148 |
+
|
149 |
+
with gr.Row():
|
150 |
+
shown_tasks_zero_shot = gr.CheckboxGroup(
|
151 |
+
choices=core.get_available_task_groups(core.get_selected_task_type(3), False),
|
152 |
+
value=core.get_available_task_groups(core.get_selected_task_type(3), False),
|
153 |
+
label="Select tasks to show",
|
154 |
+
elem_id="column-select",
|
155 |
+
interactive=True,
|
156 |
+
scale=50,
|
157 |
+
)
|
158 |
+
clear_zero_shot = gr.ClearButton(
|
159 |
+
shown_tasks_zero_shot,
|
160 |
+
value="Deselect all tasks",
|
161 |
+
size="sm",
|
162 |
+
scale=1,
|
163 |
+
)
|
164 |
+
select_zero_shot = gr.Button(
|
165 |
+
value="Select all tasks",
|
166 |
+
size="sm",
|
167 |
+
scale=1,
|
168 |
+
)
|
169 |
+
select_zero_shot.click(
|
170 |
+
lambda: gr.CheckboxGroup(value=core.get_available_task_groups(core.get_selected_task_type(3), False)),
|
171 |
+
inputs=[],
|
172 |
+
outputs=shown_tasks_zero_shot,
|
173 |
+
)
|
174 |
+
leaderboard_table_zero_shot = gr.Dataframe()
|
175 |
+
|
176 |
+
with gr.TabItem(
|
177 |
+
"๐ LLM translation benchmark",
|
178 |
+
elem_id="llm-benchmark-tab-table-misc",
|
179 |
+
id=1,
|
180 |
+
) as misc:
|
181 |
+
with gr.Column():
|
182 |
+
with gr.Row():
|
183 |
+
search_bar_misc = gr.Textbox(
|
184 |
+
label="Search models",
|
185 |
+
placeholder=" ๐ Separate multiple queries with ';' and press ENTER...",
|
186 |
+
show_label=True,
|
187 |
+
elem_id="search-bar",
|
188 |
+
)
|
189 |
+
|
190 |
+
model_types_misc = gr.CheckboxGroup(
|
191 |
+
label="Select model type",
|
192 |
+
choices=[
|
193 |
+
(
|
194 |
+
f"Pretrained {T_SYMBOLS['pretrained']}",
|
195 |
+
T_SYMBOLS["pretrained"],
|
196 |
+
),
|
197 |
+
(f"Chat {T_SYMBOLS['chat']}", T_SYMBOLS["chat"]),
|
198 |
+
],
|
199 |
+
value=list(T_SYMBOLS.values()),
|
200 |
+
)
|
201 |
|
202 |
with gr.Row():
|
203 |
+
langs_bar_misc = gr.CheckboxGroup(
|
204 |
+
choices=[(LANG_SYMBOLS.get(l, l), l) for l in core.languages_list],
|
205 |
+
value=core.languages_list,
|
206 |
+
label="Select languages to average over",
|
207 |
elem_id="column-select",
|
208 |
interactive=True,
|
209 |
+
scale=6,
|
210 |
+
)
|
211 |
+
with gr.Column(scale=1):
|
212 |
+
clear_misc = gr.ClearButton(
|
213 |
+
langs_bar_misc,
|
214 |
+
value="Deselect all languages",
|
215 |
+
size="sm",
|
216 |
+
scale=1,
|
217 |
+
)
|
218 |
+
select_misc = gr.Button(
|
219 |
+
value="Select all languages",
|
220 |
+
size="sm",
|
221 |
+
scale=1,
|
222 |
+
)
|
223 |
+
select_misc.click(
|
224 |
+
lambda: gr.CheckboxGroup(value=core.languages_list),
|
225 |
+
inputs=[],
|
226 |
+
outputs=langs_bar_misc,
|
227 |
+
)
|
228 |
+
|
229 |
+
with gr.Row():
|
230 |
+
shown_tasks_misc = gr.CheckboxGroup(
|
231 |
+
choices=core.get_available_task_groups(core.get_selected_task_type(1), False),
|
232 |
+
value=core.get_available_task_groups(core.get_selected_task_type(1), False),
|
233 |
+
label="Select tasks to show",
|
234 |
+
elem_id="column-select",
|
235 |
+
interactive=True,
|
236 |
+
scale=50,
|
237 |
+
)
|
238 |
+
clear_tasks_misc = gr.ClearButton(
|
239 |
+
shown_tasks_misc,
|
240 |
+
value="Deselect all tasks",
|
241 |
+
size="sm",
|
242 |
+
scale=1,
|
243 |
+
)
|
244 |
+
select_all_tasks_misc = gr.Button(
|
245 |
+
value="Select all tasks",
|
246 |
+
size="sm",
|
247 |
+
scale=1,
|
248 |
+
)
|
249 |
+
select_all_tasks_misc.click(
|
250 |
+
lambda: gr.CheckboxGroup(value=core.get_available_task_groups(core.get_selected_task_type(1), False)),
|
251 |
+
inputs=[],
|
252 |
+
outputs=shown_tasks_misc,
|
253 |
+
)
|
254 |
+
|
255 |
+
leaderboard_table_misc = gr.Dataframe()
|
256 |
+
|
257 |
+
with gr.TabItem(
|
258 |
+
"๐ LLM MT-Bench benchmark",
|
259 |
+
elem_id="llm-benchmark-tab-table-mtbench",
|
260 |
+
id=2,
|
261 |
+
) as mtbench:
|
262 |
+
with gr.Column():
|
263 |
+
with gr.Row():
|
264 |
+
search_bar_mtbench = gr.Textbox(
|
265 |
+
label="Search models",
|
266 |
+
placeholder=" ๐ Separate multiple queries with ';' and press ENTER...",
|
267 |
+
show_label=True,
|
268 |
+
elem_id="search-bar",
|
269 |
+
)
|
270 |
+
|
271 |
+
with gr.Row():
|
272 |
+
langs_bar_mtbench = gr.CheckboxGroup(
|
273 |
+
choices=[(LANG_SYMBOLS.get(l, l), l) for l in core.mt_bench_language_list],
|
274 |
+
value=core.mt_bench_language_list,
|
275 |
+
label="Select languages to average over",
|
276 |
+
elem_id="column-select",
|
277 |
+
interactive=True,
|
278 |
+
scale=6,
|
279 |
+
)
|
280 |
+
with gr.Column(scale=1):
|
281 |
+
clear_mtbench = gr.ClearButton(
|
282 |
+
langs_bar_mtbench,
|
283 |
+
value="Deselect all languages",
|
284 |
+
size="sm",
|
285 |
+
scale=1,
|
286 |
)
|
287 |
+
select_mtbench = gr.Button(
|
288 |
+
value="Select all languages",
|
289 |
+
size="sm",
|
290 |
+
scale=1,
|
|
|
291 |
)
|
292 |
+
select_mtbench.click(
|
293 |
+
lambda: gr.CheckboxGroup(value=core.mt_bench_language_list),
|
294 |
+
inputs=[],
|
295 |
+
outputs=langs_bar_mtbench,
|
296 |
+
)
|
297 |
+
|
298 |
+
leaderboard_table_mtbench = gr.Dataframe(scale=5)
|
299 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
for comp, fn in [
|
301 |
(search_bar, "submit"),
|
302 |
(langs_bar, "change"),
|
303 |
(shown_tasks, "change"),
|
|
|
304 |
(model_types, "change"),
|
305 |
]:
|
306 |
getattr(comp, fn)(
|
307 |
core.update_df,
|
308 |
+
[shown_tasks, search_bar, langs_bar, model_types, gr.State(value=True)],
|
309 |
leaderboard_table,
|
310 |
)
|
311 |
+
|
312 |
+
for comp, fn in [
|
313 |
+
(search_bar_zero_shot, "submit"),
|
314 |
+
(model_types_zero_shot, "change"),
|
315 |
+
(langs_bar_zero_shot, "change"),
|
316 |
+
(shown_tasks_zero_shot, "change"),
|
317 |
+
]:
|
318 |
getattr(comp, fn)(
|
319 |
core.update_df,
|
320 |
+
[shown_tasks_zero_shot, search_bar_zero_shot, langs_bar_zero_shot, model_types_zero_shot, gr.State(value=False)],
|
321 |
+
leaderboard_table_zero_shot,
|
322 |
+
)
|
323 |
+
|
324 |
+
for comp, fn in [
|
325 |
+
(search_bar_misc, "submit"),
|
326 |
+
(langs_bar_misc, "change"),
|
327 |
+
(shown_tasks_misc, "change"),
|
328 |
+
(model_types_misc, "change"),
|
329 |
+
]:
|
330 |
+
getattr(comp, fn)(
|
331 |
+
core.update_df,
|
332 |
+
[shown_tasks_misc, search_bar_misc, langs_bar_misc, model_types_misc, gr.State(value=False)],
|
333 |
leaderboard_table_misc,
|
334 |
)
|
335 |
+
|
336 |
+
for comp, fn in [
|
337 |
+
(search_bar_mtbench, "submit"),
|
338 |
+
(langs_bar_mtbench, "change"),
|
339 |
+
]:
|
340 |
getattr(comp, fn)(
|
341 |
core.update_df,
|
342 |
+
[gr.State(value=core.get_available_task_groups(core.get_selected_task_type(2), False)), search_bar_mtbench, langs_bar_mtbench, gr.State(value=[T_SYMBOLS["chat"]]), gr.State(value=False)], # TODO
|
343 |
leaderboard_table_mtbench,
|
344 |
)
|
345 |
|
346 |
gr.Blocks.load(
|
347 |
block=demo,
|
348 |
fn=core.update_df,
|
349 |
+
inputs=[shown_tasks, search_bar, langs_bar, model_types, gr.State(value=True)],
|
350 |
outputs=leaderboard_table,
|
351 |
)
|
352 |
|
353 |
gr.Blocks.load(
|
354 |
block=demo,
|
355 |
fn=core.update_df,
|
356 |
+
inputs=[shown_tasks_zero_shot, search_bar_zero_shot, langs_bar_zero_shot, model_types_zero_shot, gr.State(value=False)],
|
357 |
+
outputs=leaderboard_table_zero_shot,
|
358 |
+
)
|
359 |
+
|
360 |
+
gr.Blocks.load(
|
361 |
+
block=demo,
|
362 |
+
fn=core.update_df,
|
363 |
+
inputs=[shown_tasks_misc, search_bar_misc, langs_bar_misc, model_types_misc, gr.State(value=False)],
|
364 |
outputs=leaderboard_table_misc,
|
365 |
)
|
366 |
|
367 |
gr.Blocks.load(
|
368 |
block=demo,
|
369 |
fn=core.update_df,
|
370 |
+
inputs=[gr.State(value=core.get_available_task_groups(core.get_selected_task_type(2), False)), search_bar_mtbench, langs_bar_mtbench, gr.State(value=[T_SYMBOLS["chat"]]), gr.State(value=False)],
|
371 |
outputs=leaderboard_table_mtbench,
|
372 |
)
|
373 |
|
core.py
CHANGED
@@ -1,13 +1,11 @@
|
|
1 |
import itertools
|
2 |
import os
|
3 |
|
4 |
-
import gradio as gr
|
5 |
import numpy as np
|
6 |
import pandas as pd
|
7 |
from datasets import load_dataset
|
8 |
|
9 |
import style
|
10 |
-
from style import T_SYMBOLS, MT_BENCH_LANG_SYMBOLS, LANG_SYMBOLS
|
11 |
|
12 |
ZERO_SHOT_ONLY = ["BELEBELE", "MT-Bench"]
|
13 |
FEW_SHOT_ONLY = ["GSM8K", "TruthfulQA"]
|
@@ -29,7 +27,7 @@ def init():
|
|
29 |
task_groups_shots_df = hidden_df[hidden_df["Few_Shot"] == True][["Task_Group", "Number_Shots"]].drop_duplicates()
|
30 |
task_groups_shots_dict = task_groups_shots_df.set_index("Task_Group")["Number_Shots"].to_dict()
|
31 |
languages_list = hidden_df["Language"].drop_duplicates().str.upper().tolist()
|
32 |
-
mt_bench_language_list = hidden_df[hidden_df[
|
33 |
model_type_df = hidden_df[["Model_Name", "Model_Type"]].drop_duplicates()
|
34 |
model_type_dict = model_type_df.set_index("Model_Name")["Model_Type"].to_dict()
|
35 |
|
@@ -115,8 +113,7 @@ def update_df(
|
|
115 |
|
116 |
# aggregate results over languages per task
|
117 |
df = aggregate_langs(df, tasks, langs)
|
118 |
-
|
119 |
-
df = df.sort_values(by='Average', ascending=False)
|
120 |
|
121 |
# filter models by search bar and model type
|
122 |
df = search_model(df, model_query)
|
@@ -128,67 +125,8 @@ def update_df(
|
|
128 |
return sort_cols(df, fewshot)
|
129 |
|
130 |
|
131 |
-
def update_task_groups_and_fewshot(current_selected_tab: int, model_types, langs_bar, is_fewshot_current: bool = False, ):
|
132 |
-
selected_task_type = get_selected_task_type(current_selected_tab)
|
133 |
-
available_tasks = get_available_task_groups(selected_task_type, is_fewshot_current)
|
134 |
-
new_selected_tasks = available_tasks.copy()
|
135 |
-
|
136 |
-
tasks_checkbox_group_update = gr.CheckboxGroup(
|
137 |
-
choices=available_tasks,
|
138 |
-
value=new_selected_tasks,
|
139 |
-
)
|
140 |
-
|
141 |
-
if current_selected_tab == 0:
|
142 |
-
is_fewshot_new = is_fewshot_current
|
143 |
-
fewshot_available = True
|
144 |
-
elif current_selected_tab == 1:
|
145 |
-
is_fewshot_new = False
|
146 |
-
fewshot_available = False
|
147 |
-
elif current_selected_tab == 2:
|
148 |
-
is_fewshot_new = False
|
149 |
-
fewshot_available = False
|
150 |
-
else:
|
151 |
-
raise ValueError(f"Unknown tab id {current_selected_tab}")
|
152 |
-
|
153 |
-
fewshot_radio_update = gr.Radio(
|
154 |
-
value=is_fewshot_new,
|
155 |
-
interactive=fewshot_available,
|
156 |
-
)
|
157 |
-
|
158 |
-
if current_selected_tab == 2:
|
159 |
-
model_types = gr.CheckboxGroup(
|
160 |
-
value=[T_SYMBOLS['chat']],
|
161 |
-
interactive=False
|
162 |
-
)
|
163 |
-
langs_bar = gr.CheckboxGroup(
|
164 |
-
choices=[(MT_BENCH_LANG_SYMBOLS.get(l, l), l) for l in mt_bench_language_list],
|
165 |
-
value=mt_bench_language_list,
|
166 |
-
interactive=True,
|
167 |
-
)
|
168 |
-
else:
|
169 |
-
model_types = gr.CheckboxGroup(
|
170 |
-
label="Select model type",
|
171 |
-
choices=[
|
172 |
-
(
|
173 |
-
f"Pretrained {T_SYMBOLS['pretrained']}",
|
174 |
-
T_SYMBOLS["pretrained"],
|
175 |
-
),
|
176 |
-
(f"Chat {T_SYMBOLS['chat']}", T_SYMBOLS["chat"]),
|
177 |
-
],
|
178 |
-
value=list(T_SYMBOLS.values()),
|
179 |
-
interactive=True
|
180 |
-
)
|
181 |
-
langs_bar = gr.CheckboxGroup(
|
182 |
-
choices=[(LANG_SYMBOLS.get(l, l), l) for l in languages_list],
|
183 |
-
value=languages_list,
|
184 |
-
interactive=True,
|
185 |
-
)
|
186 |
-
|
187 |
-
return [tasks_checkbox_group_update, fewshot_radio_update, current_selected_tab, model_types, langs_bar]
|
188 |
-
|
189 |
-
|
190 |
def get_selected_task_type(task_type_id):
|
191 |
-
task_types = {0: "accuracy", 1: "misc", 2: "mtbench_score"}
|
192 |
selected_task_type = task_types[task_type_id]
|
193 |
return selected_task_type
|
194 |
|
|
|
1 |
import itertools
|
2 |
import os
|
3 |
|
|
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
6 |
from datasets import load_dataset
|
7 |
|
8 |
import style
|
|
|
9 |
|
10 |
ZERO_SHOT_ONLY = ["BELEBELE", "MT-Bench"]
|
11 |
FEW_SHOT_ONLY = ["GSM8K", "TruthfulQA"]
|
|
|
27 |
task_groups_shots_df = hidden_df[hidden_df["Few_Shot"] == True][["Task_Group", "Number_Shots"]].drop_duplicates()
|
28 |
task_groups_shots_dict = task_groups_shots_df.set_index("Task_Group")["Number_Shots"].to_dict()
|
29 |
languages_list = hidden_df["Language"].drop_duplicates().str.upper().tolist()
|
30 |
+
mt_bench_language_list = hidden_df[hidden_df["Task_Group"] == "MTBENCH"]["Language"].drop_duplicates().str.upper().tolist()
|
31 |
model_type_df = hidden_df[["Model_Name", "Model_Type"]].drop_duplicates()
|
32 |
model_type_dict = model_type_df.set_index("Model_Name")["Model_Type"].to_dict()
|
33 |
|
|
|
113 |
|
114 |
# aggregate results over languages per task
|
115 |
df = aggregate_langs(df, tasks, langs)
|
116 |
+
df = df.sort_values(by="Average", ascending=False)
|
|
|
117 |
|
118 |
# filter models by search bar and model type
|
119 |
df = search_model(df, model_query)
|
|
|
125 |
return sort_cols(df, fewshot)
|
126 |
|
127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
def get_selected_task_type(task_type_id):
|
129 |
+
task_types = {0: "accuracy", 1: "misc", 2: "mtbench_score", 3: "accuracy"}
|
130 |
selected_task_type = task_types[task_type_id]
|
131 |
return selected_task_type
|
132 |
|
style.py
CHANGED
@@ -11,10 +11,101 @@ CSS = """
|
|
11 |
}
|
12 |
"""
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
17 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
LANG_SYMBOLS = {
|
20 |
"BG": "๐ง๐ฌ BG",
|
@@ -37,13 +128,7 @@ LANG_SYMBOLS = {
|
|
37 |
"RO": "๐ท๐ด RO",
|
38 |
"SK": "๐ธ๐ฐ SK",
|
39 |
"SL": "๐ธ๐ฎ SL",
|
40 |
-
"SV": "๐ธ๐ช SV"
|
41 |
}
|
42 |
|
43 |
-
MT_BENCH_LANG_SYMBOLS = {
|
44 |
-
"ES": "๐ช๐ธ ES",
|
45 |
-
"EN": "๐ฌ๐ง EN",
|
46 |
-
"DE": "๐ฉ๐ช DE",
|
47 |
-
"FR": "๐ซ๐ท FR",
|
48 |
-
"IT": "๐ฎ๐น IT"
|
49 |
-
}
|
|
|
11 |
}
|
12 |
"""
|
13 |
|
14 |
+
OPEN_LLM_LEADERBOARD_CSS = """
|
15 |
+
/* Limit the width of the first AutoEvalColumn so that names don't expand too much */
|
16 |
+
table td:first-child,
|
17 |
+
table th:first-child {
|
18 |
+
max-width: 400px;
|
19 |
+
overflow: auto;
|
20 |
+
white-space: nowrap;
|
21 |
}
|
22 |
+
/* Full width space */
|
23 |
+
.gradio-container {
|
24 |
+
max-width: 95% !important;
|
25 |
+
}
|
26 |
+
/* Text style and margins */
|
27 |
+
.markdown-text {
|
28 |
+
font-size: 16px !important;
|
29 |
+
}
|
30 |
+
#models-to-add-text {
|
31 |
+
font-size: 18px !important;
|
32 |
+
}
|
33 |
+
#citation-button span {
|
34 |
+
font-size: 16px !important;
|
35 |
+
}
|
36 |
+
#citation-button textarea {
|
37 |
+
font-size: 16px !important;
|
38 |
+
}
|
39 |
+
#citation-button > label > button {
|
40 |
+
margin: 6px;
|
41 |
+
transform: scale(1.3);
|
42 |
+
}
|
43 |
+
#search-bar-table-box > div:first-child {
|
44 |
+
background: none;
|
45 |
+
border: none;
|
46 |
+
}
|
47 |
+
#search-bar {
|
48 |
+
padding: 0px;
|
49 |
+
}
|
50 |
+
.tab-buttons button {
|
51 |
+
font-size: 20px;
|
52 |
+
}
|
53 |
+
/* Filters style */
|
54 |
+
#filter_type {
|
55 |
+
border: 0;
|
56 |
+
padding-left: 0;
|
57 |
+
padding-top: 0;
|
58 |
+
}
|
59 |
+
#filter_type label {
|
60 |
+
display: flex;
|
61 |
+
}
|
62 |
+
#filter_type label > span {
|
63 |
+
margin-top: var(--spacing-lg);
|
64 |
+
margin-right: 0.5em;
|
65 |
+
}
|
66 |
+
#filter_type label > .wrap {
|
67 |
+
width: 103px;
|
68 |
+
}
|
69 |
+
#filter_type label > .wrap .wrap-inner {
|
70 |
+
padding: 2px;
|
71 |
+
}
|
72 |
+
#filter_type label > .wrap .wrap-inner input {
|
73 |
+
width: 1px;
|
74 |
+
}
|
75 |
+
#filter-columns-type {
|
76 |
+
border: 0;
|
77 |
+
padding: 0.5;
|
78 |
+
}
|
79 |
+
#filter-columns-size {
|
80 |
+
border: 0;
|
81 |
+
padding: 0.5;
|
82 |
+
}
|
83 |
+
#box-filter > .form {
|
84 |
+
border: 0;
|
85 |
+
}
|
86 |
+
/* Header styles */
|
87 |
+
#header-title {
|
88 |
+
text-align: left;
|
89 |
+
display: inline-block;
|
90 |
+
}
|
91 |
+
#header-row {
|
92 |
+
display: flex;
|
93 |
+
justify-content: space-between;
|
94 |
+
align-items: center;
|
95 |
+
}
|
96 |
+
#header-row .gradio-html {
|
97 |
+
flex-grow: 1;
|
98 |
+
}
|
99 |
+
#oauth-button {
|
100 |
+
height: auto;
|
101 |
+
min-width: max-content;
|
102 |
+
white-space: nowrap;
|
103 |
+
padding: 10px 20px;
|
104 |
+
border-radius: 4px;
|
105 |
+
}
|
106 |
+
"""
|
107 |
+
|
108 |
+
T_SYMBOLS = {"pretrained": "๐ข", "chat": "๐ฌ"}
|
109 |
|
110 |
LANG_SYMBOLS = {
|
111 |
"BG": "๐ง๐ฌ BG",
|
|
|
128 |
"RO": "๐ท๐ด RO",
|
129 |
"SK": "๐ธ๐ฐ SK",
|
130 |
"SL": "๐ธ๐ฎ SL",
|
131 |
+
"SV": "๐ธ๐ช SV",
|
132 |
}
|
133 |
|
134 |
+
MT_BENCH_LANG_SYMBOLS = {"ES": "๐ช๐ธ ES", "EN": "๐ฌ๐ง EN", "DE": "๐ฉ๐ช DE", "FR": "๐ซ๐ท FR", "IT": "๐ฎ๐น IT"}
|
|
|
|
|
|
|
|
|
|
|
|