FarahMohsenSamy1 commited on
Commit
64a928c
·
verified ·
1 Parent(s): 7762e93

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -3
app.py CHANGED
@@ -196,11 +196,13 @@ def preprocess_data(df, le_user=None, le_item=None, scaler=None):
196
  df["user_id_idx"] = le_user.fit_transform(df["Customer_ID"].values)
197
  if le_item is not None:
198
  df["item_id_idx"] = le_item.fit_transform(df["Item_ID"].values)
 
 
199
  if scaler is not None:
200
- df["Timestamp"] = pd.to_datetime(df["Timestamp"])
201
- df["Timestamp_numeric"] = df["Timestamp"].astype("int64") // 10**9 # seconds since epoch
202
  df["Date"] = scaler.fit_transform(df[["Timestamp_numeric"]])
203
-
204
  return df
205
 
206
 
 
196
  df["user_id_idx"] = le_user.fit_transform(df["Customer_ID"].values)
197
  if le_item is not None:
198
  df["item_id_idx"] = le_item.fit_transform(df["Item_ID"].values)
199
+ df["Timestamp"] = pd.to_datetime(df["Timestamp"], unit='s')
200
+
201
  if scaler is not None:
202
+ # Option 1: scale based on numeric timestamp
203
+ df["Timestamp_numeric"] = df["Timestamp"].astype(np.int64) // 10**9
204
  df["Date"] = scaler.fit_transform(df[["Timestamp_numeric"]])
205
+
206
  return df
207
 
208