Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -196,11 +196,13 @@ def preprocess_data(df, le_user=None, le_item=None, scaler=None):
|
|
196 |
df["user_id_idx"] = le_user.fit_transform(df["Customer_ID"].values)
|
197 |
if le_item is not None:
|
198 |
df["item_id_idx"] = le_item.fit_transform(df["Item_ID"].values)
|
|
|
|
|
199 |
if scaler is not None:
|
200 |
-
|
201 |
-
df["Timestamp_numeric"] = df["Timestamp"].astype(
|
202 |
df["Date"] = scaler.fit_transform(df[["Timestamp_numeric"]])
|
203 |
-
|
204 |
return df
|
205 |
|
206 |
|
|
|
196 |
df["user_id_idx"] = le_user.fit_transform(df["Customer_ID"].values)
|
197 |
if le_item is not None:
|
198 |
df["item_id_idx"] = le_item.fit_transform(df["Item_ID"].values)
|
199 |
+
df["Timestamp"] = pd.to_datetime(df["Timestamp"], unit='s')
|
200 |
+
|
201 |
if scaler is not None:
|
202 |
+
# Option 1: scale based on numeric timestamp
|
203 |
+
df["Timestamp_numeric"] = df["Timestamp"].astype(np.int64) // 10**9
|
204 |
df["Date"] = scaler.fit_transform(df[["Timestamp_numeric"]])
|
205 |
+
|
206 |
return df
|
207 |
|
208 |
|