|
import gradio as gr |
|
from predict_utils import load_model_and_thresholds, predict |
|
|
|
model, tokenizer, thresholds = load_model_and_thresholds() |
|
|
|
def classify(text): |
|
return predict(text, model, tokenizer, thresholds) |
|
|
|
gr.Interface( |
|
fn=classify, |
|
inputs=gr.Textbox(lines=4, placeholder="Masukkan teks cyberbullying..."), |
|
outputs=gr.Label(label="Prediksi Cyberbullying", num_top_classes=12), |
|
title="๐ฌ Deteksi Cyberbullying Multi-Label ๐ฎ๐ฉ", |
|
description="Model IndoBERT + BiLSTM dengan threshold ROC-AUC. Menampilkan 12 label klasifikasi multi-label teks bahasa Indonesia.", |
|
examples=[ |
|
["Dasar kamu goblok dan gak punya otak!"], |
|
["Cewek seperti itu emang pantas dihina."], |
|
["Pribumi kampungan gak punya budaya!"] |
|
] |
|
).launch() |