Create predict_utils.py
Browse files- predict_utils.py +33 -0
predict_utils.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from transformers import BertTokenizer
|
4 |
+
from model import HybridModel
|
5 |
+
|
6 |
+
LABELS = ['HS', 'Abusive', 'HS_Individual', 'HS_Group', 'HS_Religion', 'HS_Race',
|
7 |
+
'HS_Physical', 'HS_Gender', 'HS_Other', 'HS_Weak', 'HS_Moderate', 'HS_Strong']
|
8 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
|
10 |
+
def load_model_and_thresholds():
|
11 |
+
model = HybridModel()
|
12 |
+
model.load_state_dict(torch.load("best_model_dataScrap_final.pt", map_location=DEVICE))
|
13 |
+
model.to(DEVICE)
|
14 |
+
model.eval()
|
15 |
+
|
16 |
+
tokenizer = BertTokenizer.from_pretrained("indobenchmark/indobert-base-p1")
|
17 |
+
thresholds = np.load("optimal_thresholds_dataScrap_final.npy")
|
18 |
+
return model, tokenizer, thresholds
|
19 |
+
|
20 |
+
def predict(text, model, tokenizer, thresholds):
|
21 |
+
encoding = tokenizer(text, return_tensors='pt', padding='max_length', truncation=True, max_length=128)
|
22 |
+
input_ids = encoding["input_ids"].to(DEVICE)
|
23 |
+
attention_mask = encoding["attention_mask"].to(DEVICE)
|
24 |
+
|
25 |
+
with torch.no_grad():
|
26 |
+
probs = model(input_ids, attention_mask).squeeze(0).cpu().numpy()
|
27 |
+
|
28 |
+
# Konversi probabilitas ke binary
|
29 |
+
preds_bin = (probs > thresholds).astype(int)
|
30 |
+
|
31 |
+
# Format hasil
|
32 |
+
return {label: f"✅ Ya ({prob:.2f})" if pred else f"❌ Tidak ({prob:.2f})"
|
33 |
+
for label, prob, pred in zip(LABELS, probs, preds_bin)}
|