Update train.py
Browse files
train.py
CHANGED
@@ -8,11 +8,13 @@ model_name = "TheBloke/Llama-2-7B-GGUF"
|
|
8 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
|
11 |
-
# ✅ Step 2:
|
12 |
-
dataset1 = load_dataset("openai/webgpt", split="train") # Logical reasoning
|
13 |
dataset2 = load_dataset("lex_glue", split="train") # Formal/legal writing
|
14 |
dataset3 = load_dataset("scidataset", split="train") # Scientific accuracy
|
15 |
-
|
|
|
|
|
16 |
|
17 |
# ✅ Step 3: Apply LoRA Fine-Tuning
|
18 |
lora_config = LoraConfig(r=8, lora_alpha=32, lora_dropout=0.1)
|
|
|
8 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
|
11 |
+
# ✅ Step 2: Load Training Datasets
|
12 |
+
dataset1 = load_dataset("openai/webgpt", split="train") # Logical reasoning & knowledge
|
13 |
dataset2 = load_dataset("lex_glue", split="train") # Formal/legal writing
|
14 |
dataset3 = load_dataset("scidataset", split="train") # Scientific accuracy
|
15 |
+
|
16 |
+
# Merge datasets
|
17 |
+
dataset = dataset1 + dataset2 + dataset3
|
18 |
|
19 |
# ✅ Step 3: Apply LoRA Fine-Tuning
|
20 |
lora_config = LoraConfig(r=8, lora_alpha=32, lora_dropout=0.1)
|