Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +100 -0
- best.pt +3 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import random
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from ultralytics import YOLO
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
# Load the trained YOLO model
|
9 |
+
MODEL_PATH = "best.pt" # Replace with your model's path
|
10 |
+
model = YOLO(MODEL_PATH)
|
11 |
+
|
12 |
+
def random_color():
|
13 |
+
"""Generate a random color for bounding boxes."""
|
14 |
+
return (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
|
15 |
+
|
16 |
+
def detect_and_visualize(image_path):
|
17 |
+
"""
|
18 |
+
Perform object detection and visualize the results.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
image_path (str): Path to the input image.
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
Annotated image as an array.
|
25 |
+
Detection details as a dictionary.
|
26 |
+
"""
|
27 |
+
# Perform object detection
|
28 |
+
results = model(image_path)
|
29 |
+
|
30 |
+
# Read the input image
|
31 |
+
image = cv2.imread(image_path)
|
32 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert to RGB
|
33 |
+
|
34 |
+
detections = []
|
35 |
+
for result in results:
|
36 |
+
boxes = result.boxes.xyxy.cpu().numpy() # Bounding box coordinates
|
37 |
+
confidences = result.boxes.conf.cpu().numpy() # Confidence scores
|
38 |
+
class_ids = result.boxes.cls.cpu().numpy().astype(int) # Class IDs
|
39 |
+
|
40 |
+
for box, confidence, class_id in zip(boxes, confidences, class_ids):
|
41 |
+
x_min, y_min, x_max, y_max = map(int, box)
|
42 |
+
class_name = model.names[class_id]
|
43 |
+
|
44 |
+
# Draw bounding box and label
|
45 |
+
color = random_color()
|
46 |
+
cv2.rectangle(image, (x_min, y_min), (x_max, y_max), color, 2)
|
47 |
+
label = f"{class_name} {confidence:.2f}"
|
48 |
+
cv2.putText(image, label, (x_min, y_min - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
49 |
+
|
50 |
+
# Append detection details
|
51 |
+
detections.append({
|
52 |
+
"label": class_name,
|
53 |
+
"confidence": float(confidence),
|
54 |
+
"bounding_box": {
|
55 |
+
"x1": x_min,
|
56 |
+
"y1": y_min,
|
57 |
+
"x2": x_max,
|
58 |
+
"y2": y_max
|
59 |
+
}
|
60 |
+
})
|
61 |
+
|
62 |
+
# Optionally save the annotated image
|
63 |
+
output_path = "output/annotated_image.jpg"
|
64 |
+
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
65 |
+
cv2.imwrite(output_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
|
66 |
+
print(f"Annotated image saved to {output_path}")
|
67 |
+
|
68 |
+
return cv2.cvtColor(image, cv2.COLOR_RGB2BGR), detections
|
69 |
+
|
70 |
+
# Gradio interface
|
71 |
+
def gradio_interface(image):
|
72 |
+
"""
|
73 |
+
Gradio-compatible wrapper for object detection.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
image (numpy.array): Input image.
|
77 |
+
|
78 |
+
Returns:
|
79 |
+
Annotated image and detection details.
|
80 |
+
"""
|
81 |
+
temp_input_path = "temp_input.jpg"
|
82 |
+
cv2.imwrite(temp_input_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR)) # Save temp file for YOLO
|
83 |
+
annotated_image, detections = detect_and_visualize(temp_input_path)
|
84 |
+
os.remove(temp_input_path) # Clean up temp file
|
85 |
+
return annotated_image, detections
|
86 |
+
|
87 |
+
# Define Gradio interface
|
88 |
+
interface = gr.Interface(
|
89 |
+
fn=gradio_interface,
|
90 |
+
inputs=gr.Image(type="numpy", label="Upload Image"),
|
91 |
+
outputs=[
|
92 |
+
gr.Image(type="numpy", label="Annotated Image"),
|
93 |
+
gr.JSON(label="Detection Details")
|
94 |
+
],
|
95 |
+
title="YOLO Object Detection",
|
96 |
+
description="Upload an image to detect objects and view annotated results along with detailed detection data."
|
97 |
+
)
|
98 |
+
|
99 |
+
if __name__ == "__main__":
|
100 |
+
interface.launch()
|
best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:832aa82977bb37e2cef48b59118b64a705aefb476bcaa7fd94c9f9fe3ef84b91
|
3 |
+
size 116598226
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
ultralytics
|
3 |
+
opencv-python
|
4 |
+
matplotlib
|