Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,242 Bytes
30320c9 34aea46 30320c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 |
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss, CTCLoss
from transformers import AutoConfig, AutoModelForCausalLM, \
LlamaConfig, LlamaModel, LlamaForCausalLM
from transformers.trainer_pt_utils import LabelSmoother
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers import (
WhisperProcessor,
WhisperModel,
)
from T2ULlama_CR_online import T2ULlamaForCausalLM
IGNORE_TOKEN_ID = LabelSmoother.ignore_index
class ACLlamaConfig(LlamaConfig):
model_type = "ACLlama"
def load_whisper(audio_tower_name, device="cuda"):
model = WhisperModel.from_pretrained(
"openai/whisper-large-v3",torch_dtype=torch.float16,low_cpu_mem_usage=True).to(device)
model.config.forced_decoder_ids = None
return model
class LookBackModule(nn.Module):
def __init__(self, cfg: LlamaConfig):
super().__init__()
self.encoder_attn = nn.MultiheadAttention(
cfg.hidden_size,
cfg.num_attention_heads,
dropout=0.1,
batch_first=True
)
self.atten_layer_norm = nn.LayerNorm(cfg.hidden_size)
def forward(self, x, wav_feature, bf_shrink_padding_mask):
residual = x
x, _ = self.encoder_attn(
query=x,
key=wav_feature,
value=wav_feature,
key_padding_mask=bf_shrink_padding_mask,
#attn_mask=padding_mask,
)
x += residual
x = self.atten_layer_norm(x)
return x
class ACLlamaModel(LlamaModel):
config_class = ACLlamaConfig
def __init__(self, config: LlamaConfig):
super(ACLlamaModel, self).__init__(config)
if hasattr(config, "audio_tower"):
self.audio_tower = [load_whisper(config.audio_tower)]
if hasattr(config, "adapter_size"):
self.mm_projector1 = nn.Linear(config.adapter_size*2 , config.hidden_size)
asr_encoder_layer = nn.TransformerEncoderLayer(
d_model=config.hidden_size,
nhead=config.num_attention_heads,
dim_feedforward=config.hidden_size*2,
dropout=0.1,
norm_first=True
)
self.lbm = LookBackModule(config)
self.out_norm = nn.LayerNorm(config.hidden_size)
self.audio_feature_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.asr_transformer_encoder = nn.TransformerEncoder(asr_encoder_layer, num_layers=1)
self.mask_tensor=(torch.ones([1, 2048])>0)
self.length=-1
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
audios: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
# HACK: replace back original embeddings for LLaAA pretraining
orig_embeds_params = getattr(self, 'orig_embeds_params', None)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
audio_tower = getattr(self, 'audio_tower', None)
if audio_tower is not None and (input_ids.shape[1] != 1 or self.training) and audios is not None:
audio_tower = audio_tower[0] # HACK: for FSDP
audio_list=[]
audio_config = audio_tower.config
for audio in audios:
with torch.no_grad():
audio_feature = audio_tower.encoder(audio).last_hidden_state
audio_feature = audio_feature.view(audio_feature.shape[0], audio_feature.shape[1]//2, 2 * audio_feature.shape[2])
audio_feature = self.mm_projector1(audio_feature)
audio_feature = self.asr_transformer_encoder(audio_feature)
audio_feature = self.out_norm(audio_feature)
audio_list.append(audio_feature)
audio_features = torch.stack(audio_list, dim=0)
batch = audio_features.shape[0]
audio_turn = audio_features.shape[1]
audio_features = audio_features.view((batch * audio_turn,)+audio_features.shape[2:])
predict_logits = self.audio_feature_head(audio_features)
new_input_embeds = []
label_shift = []
speech_pos = []
label_extend = -1
new_input_ids = []
tokens = predict_logits.argmax(dim=-1)
shrink_mask = tokens.roll(1) != tokens
shrink_mask[:,0] = True
lengths = shrink_mask.long().sum(-1)
shrink_2d = audio_features[shrink_mask]
#num_patches = audio_features.shape[1]
num_patches = audio_config.audio_patch_size
l_index=0
shrink_features_raw = []
for v, audio_feature, mask in zip(lengths, audio_features, ~shrink_mask):
shrink_feature = shrink_2d[l_index:l_index+v]
shrink_feature = self.lbm(shrink_feature, audio_feature, bf_shrink_padding_mask=mask)
shrink_features_raw.append(shrink_feature)
l_index += v
shrink_features = []
for i in range(0, len(shrink_features_raw), audio_turn):
shrink_features.append(shrink_features_raw[i:i+audio_turn])
if self.training:
maxn_length = lengths.view(batch,audio_turn).sum(-1).max()
label_extend = maxn_length - num_patches * audio_turn
old_seq_length = inputs_embeds.shape[1]
for cur_input_ids, cur_input_embeds, cur_shrink_features in zip(input_ids, inputs_embeds, shrink_features):
pad_ids = torch.full(size=(maxn_length,), fill_value=audio_config.llm_pad_token_id, dtype=torch.long).to(attention_mask.device)
pad_embeds = self.embed_tokens(pad_ids)
audio_start_token_pos_all = torch.where(cur_input_ids == audio_config.audio_patch_token)[0]
#print(cur_input_embeds.shape,cur_input_ids.shape)
inner_label_shift = []
inner_speech_pos = []
for audio_start_token_pos, shrink_feature in reversed(list(zip(audio_start_token_pos_all, cur_shrink_features))): #zip(audio_start_token_pos_all, cur_shrink_features):
cur_speech_length = shrink_feature.shape[0]
cur_input_ids = torch.cat((cur_input_ids[:audio_start_token_pos],
cur_input_ids[audio_start_token_pos: audio_start_token_pos+1].repeat(cur_speech_length),
cur_input_ids[audio_start_token_pos + num_patches:]), dim=0)
cur_input_embeds = torch.cat((
cur_input_embeds[:audio_start_token_pos],
shrink_feature,
cur_input_embeds[audio_start_token_pos + num_patches:]), dim=0)
inner_label_shift.insert(0, cur_speech_length - num_patches)
inner_speech_pos.insert(0, audio_start_token_pos)
label_shift = label_shift + inner_label_shift
speech_pos = speech_pos + inner_speech_pos
cur_new_input_embeds = torch.cat((cur_input_embeds, pad_embeds[:old_seq_length + label_extend - cur_input_embeds.shape[0]]),dim=0)
cur_new_input_ids = torch.cat((cur_input_ids, pad_ids[:old_seq_length + label_extend - cur_input_ids.shape[0]]),dim=0)
new_input_embeds.append(cur_new_input_embeds)
new_input_ids.append(cur_new_input_ids)
input_ids = torch.stack(new_input_ids, dim=0)
attention_mask=input_ids.ne(audio_config.llm_pad_token_id)
inputs_embeds = torch.stack(new_input_embeds, dim=0)
batch_label_shift = []
batch_speech_pos=[]
for i in range(0, len(label_shift), audio_turn):
batch_label_shift.append(label_shift[i:i+audio_turn])
batch_speech_pos.append(speech_pos[i:i+audio_turn])
else:
# Inference mode with batch_size=1
assert input_ids.shape[0] == 1, "This implementation only supports batch_size=1 during inference"
# Get all audio token positions in this sample
audio_start_token_positions = torch.where(input_ids[0] == audio_config.audio_patch_token)[0]
# Initialize with original embeddings
current_embeds = inputs_embeds[0] # [seq_len, embed_dim]
current_ids = input_ids[0] # [seq_len]
# Process each audio token position sequentially
position_shift = 0 # Track position changes due to expansions
# Ensure shrink_features is properly formatted
if isinstance(shrink_features[0], list):
# If it's a list of lists (batch_size=1 but multiple turns), flatten it
shrink_features = [item for sublist in shrink_features for item in sublist]
for pos_idx, audio_pos in enumerate(audio_start_token_positions):
adjusted_pos = audio_pos + position_shift
# Get corresponding shrink feature (ensure it's a tensor)
shrink_feature = shrink_features[pos_idx]
if isinstance(shrink_feature, list):
shrink_feature = torch.stack(shrink_feature, dim=0)
v = shrink_feature.shape[0] # Now this should work
# print('len: ', v)
# Expand the input ids and embeddings
current_ids = torch.cat([
current_ids[:adjusted_pos],
current_ids[adjusted_pos:adjusted_pos+1].repeat(v),
current_ids[adjusted_pos + num_patches:]
], dim=0)
current_embeds = torch.cat([
current_embeds[:adjusted_pos],
shrink_feature,
current_embeds[adjusted_pos + num_patches:]
], dim=0)
# Update position shift for next iteration
position_shift += (v - num_patches)
# Update the tensors (unsqueeze to restore batch dim)
input_ids = current_ids.unsqueeze(0) # [1, new_seq_len]
inputs_embeds = current_embeds.unsqueeze(0) # [1, new_seq_len, embed_dim]
attention_mask = input_ids.ne(audio_config.llm_pad_token_id)
# Update inference state tracking
if not hasattr(self, 'mask_tensor'):
# Initialize with current attention mask
self.mask_tensor = attention_mask.clone()
self.length = attention_mask.shape[1]
else:
# Ensure mask tensor is on correct device
self.mask_tensor = self.mask_tensor.to(attention_mask.device)
# Expand mask tensor if needed
if self.mask_tensor.shape[1] < attention_mask.shape[1]:
new_mask = torch.zeros(1, attention_mask.shape[1],
dtype=torch.bool,
device=attention_mask.device)
new_mask[0, :self.mask_tensor.shape[1]] = self.mask_tensor
self.mask_tensor = new_mask
# Update mask tensor
self.mask_tensor[0, :attention_mask.shape[1]] = attention_mask[0]
self.length = attention_mask.shape[1]
attention_mask=self.mask_tensor[:,:self.length]
self.length+=1
return_state=super(ACLlamaModel, self).forward(
input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values,
inputs_embeds=inputs_embeds, use_cache=use_cache,
output_attentions=output_attentions, output_hidden_states=output_hidden_states,
return_dict=return_dict
)
if self.training and audios is not None:
return_state["audio_features"] = predict_logits
return_state["label_shift"] = batch_label_shift
return_state["label_extend"] = label_extend
return_state["speech_pos"] = batch_speech_pos
#return_state = {"audio_features":predict_logits}
return return_state
class ACLlamaForCausalLM(LlamaForCausalLM):
config_class = ACLlamaConfig
def __init__(self, config):
super(LlamaForCausalLM, self).__init__(config)
self.model = ACLlamaModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# t2u by kkq
if hasattr(config, "unit_output"):
self.unit_output = config.unit_output
self.unit_translator = T2ULlamaForCausalLM(config, self.lm_head.weight)
# Initialize weights and apply final processing
self.post_init()
def get_model(self):
return self.model
def get_unit_translator(self):
return self.unit_translator
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
t2u_input_ids: Optional[torch.LongTensor] = None,
t2u_labels: Optional[torch.LongTensor] = None,
t2u_attention_mask: Optional[torch.Tensor] = None,
unit_targets: Optional[torch.Tensor] = None,
sub_lengths: Optional[torch.Tensor] = None,
asr_targets: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
audios: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
do_task: str = None,
assistant_after_audio_shifts: Optional[torch.Tensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
# t2u by kkq
# pretrain(t2u only) finetune(s2t&e2u)
do_task = do_task if do_task != None else getattr(self, 'unit_output', None)
outputs = None
hidden_states = None
new_shift_labels = None
if do_task != "pretrain":
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
audios=audios
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None and do_task != "pretrain" and do_task != "finetune_kd":
if asr_targets is not None:
asr_logits = outputs["audio_features"]
asr_targets = asr_targets.view(asr_targets.shape[0] * asr_targets.shape[1], asr_targets.shape[2])
mask_asr_targets = (asr_targets != IGNORE_TOKEN_ID)
target_lengths = mask_asr_targets.sum(1)
input_lengths = torch.full(size=(asr_logits.shape[0],), fill_value=asr_logits.shape[1], dtype=torch.long)
loss_ctc = CTCLoss()
log_probs = F.log_softmax(asr_logits, dim=-1).transpose(0, 1)
#print(asr_targets.shape)
#print(input_lengths, target_lengths)
with torch.backends.cudnn.flags(enabled=False):
loss_asr = F.ctc_loss(
log_probs,
asr_targets,
input_lengths,
target_lengths,
blank=self.model.audio_tower[0].config.audio_patch_token,
reduction='mean',
zero_infinity=True,
)
else:
loss_asr=0
shift_labels = labels
if "label_shift" in outputs.keys() and len(outputs["label_shift"]) >0:
if outputs["label_extend"] != -1:
new_shift_labels = torch.full(size=(shift_labels.shape[0], outputs["label_extend"]+shift_labels.shape[1]), fill_value=IGNORE_TOKEN_ID, dtype=torch.long).to(shift_labels.device)
for batch in range(len(outputs["label_shift"])):
it_lable_shift = outputs["label_shift"][batch]
it_speech_pos = outputs["speech_pos"][batch]
prefix = 0
for i in range(len(it_lable_shift)):
if i == len(it_lable_shift) - 1:
length = shift_labels.shape[1] - it_speech_pos[i] #len(shift_labels[batch]) - it_speech_pos[i]
else:
length = it_speech_pos[i + 1] - it_speech_pos[i]
prefix += it_lable_shift[i]
new_shift_labels[batch][it_speech_pos[i] + prefix: it_speech_pos[i] + length + prefix]= shift_labels[batch][it_speech_pos[i]:it_speech_pos[i]+length]
shift_labels = new_shift_labels
else:
raise NotImplementedError
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = shift_labels[..., 1:].contiguous()
#print(shift_labels[:,:50])
#print(shift_labels[:,:150])
loss_fct = CrossEntropyLoss()
# Flatten the tokens
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
loss = loss + 0.3 * loss_asr
t2u_output = None
if do_task != None and do_task != "skip":
if do_task == "finetune_kd":
text_start_index = []
for batch in range(len(outputs["label_shift"])):
text_start_index.append(outputs["speech_pos"][batch][0] + outputs["label_shift"][batch][0]+assistant_after_audio_shifts[batch])
t2u_embeds_output = self.unit_translator.insert_text_embedding(
input_ids=t2u_input_ids,
attention_mask=t2u_attention_mask,
inputs_embeds=None,
labels=t2u_labels,
text_labels=labels,
shift_text_labels=new_shift_labels,
shift_text_hidden_states=hidden_states,
unit_targets=unit_targets,
sub_lengths=sub_lengths,
text_start_index=text_start_index,
do_task=do_task,
)
vae_loss, t2u_inputs_embeds, unit_targets, t2u_attention_mask = t2u_embeds_output
t2u_output = self.unit_translator(
input_ids=None,
attention_mask=t2u_attention_mask,
past_key_values=past_key_values,
inputs_embeds=t2u_inputs_embeds,
use_cache=use_cache,
labels=unit_targets,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
else:
t2u_embeds_output = self.unit_translator.insert_text_embedding(
input_ids=t2u_input_ids,
attention_mask=t2u_attention_mask,
inputs_embeds=None,
labels=t2u_labels,
text_labels=labels,
shift_text_labels=new_shift_labels,
shift_text_hidden_states=hidden_states,
do_task=do_task,
)
vae_loss, t2u_inputs_embeds = t2u_embeds_output
t2u_output = self.unit_translator(
input_ids=None,
attention_mask=t2u_attention_mask,
past_key_values=past_key_values,
inputs_embeds=t2u_inputs_embeds,
use_cache=use_cache,
labels=t2u_labels,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
t2u_loss = t2u_output[0]
# print(do_task, t2u_loss, vae_loss)
if vae_loss != None:
target_scale = t2u_loss.item() * 0.2
vae_loss_weight = target_scale / vae_loss.item() if vae_loss > target_scale else 1.0
t2u_loss = t2u_loss + vae_loss_weight * vae_loss
#print(vae_loss)
if loss != None: # S2T + T2U loss
# ignore LLM loss
# t2u_output["loss"] = t2u_loss
# return t2u_output
# original version
assert do_task in ["finetune"]
if loss.item() < 1.0: # 1.7
loss = 0.2 * loss + t2u_loss * 2.0
else:
loss = loss + t2u_loss
else:
assert do_task in ["pretrain", "finetune_kd"]
t2u_output["loss"] = t2u_loss
return t2u_output
#return CausalLMOutputWithPast(
# loss=loss,
# logits=outputs["audio_features"],
#)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
**kwargs,
):
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
# Exception 1: when passing input_embeds, input_ids may be missing entries
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
if past_key_values is not None:
if inputs_embeds is not None: # Exception 1
input_ids = input_ids[:, -cache_position.shape[0] :]
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and cache_position[0] == 0:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases
model_inputs.update(
{
"position_ids": position_ids,
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
}
)
model_inputs.update({"audios": kwargs["audios"]} if "audios" in kwargs.keys() else {})
model_inputs.update({"do_task": kwargs["do_task"]} if "do_task" in kwargs.keys() else {})
model_inputs.update({"return_dict": kwargs["return_dict_in_generate"]} if "return_dict_in_generate" in kwargs.keys() else {})
return model_inputs
AutoConfig.register("ACLlama", ACLlamaConfig)
AutoModelForCausalLM.register(ACLlamaConfig, ACLlamaForCausalLM) |