File size: 26,242 Bytes
30320c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34aea46
30320c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss, CTCLoss


from transformers import AutoConfig, AutoModelForCausalLM, \
                         LlamaConfig, LlamaModel, LlamaForCausalLM
from transformers.trainer_pt_utils import LabelSmoother
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers import (
    WhisperProcessor,
    WhisperModel,
)
from T2ULlama_CR_online import T2ULlamaForCausalLM

IGNORE_TOKEN_ID = LabelSmoother.ignore_index

class ACLlamaConfig(LlamaConfig):
    model_type = "ACLlama"
    
def load_whisper(audio_tower_name, device="cuda"):
    model = WhisperModel.from_pretrained(
            "openai/whisper-large-v3",torch_dtype=torch.float16,low_cpu_mem_usage=True).to(device)
    model.config.forced_decoder_ids = None
    return model

class LookBackModule(nn.Module):
    def __init__(self, cfg: LlamaConfig):
        super().__init__()
        self.encoder_attn = nn.MultiheadAttention(
            cfg.hidden_size,
            cfg.num_attention_heads,
            dropout=0.1,
            batch_first=True
        )
        self.atten_layer_norm = nn.LayerNorm(cfg.hidden_size)


    def forward(self, x, wav_feature, bf_shrink_padding_mask):

        residual = x
        x, _ = self.encoder_attn(
            query=x,
            key=wav_feature,
            value=wav_feature,
            key_padding_mask=bf_shrink_padding_mask,
            #attn_mask=padding_mask,
        )
        x += residual
        x = self.atten_layer_norm(x)
        return x

class ACLlamaModel(LlamaModel):
    config_class = ACLlamaConfig

    def __init__(self, config: LlamaConfig):
        super(ACLlamaModel, self).__init__(config)

        if hasattr(config, "audio_tower"):
            self.audio_tower = [load_whisper(config.audio_tower)]

        if hasattr(config, "adapter_size"):

            self.mm_projector1 = nn.Linear(config.adapter_size*2 , config.hidden_size)
            asr_encoder_layer = nn.TransformerEncoderLayer(
                d_model=config.hidden_size,
                nhead=config.num_attention_heads,
                dim_feedforward=config.hidden_size*2,
                dropout=0.1,
                norm_first=True
            )
            self.lbm =  LookBackModule(config)
            self.out_norm = nn.LayerNorm(config.hidden_size)
            self.audio_feature_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
            self.asr_transformer_encoder = nn.TransformerEncoder(asr_encoder_layer, num_layers=1)
            self.mask_tensor=(torch.ones([1, 2048])>0)
            self.length=-1

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        audios: Optional[torch.FloatTensor] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:

        # HACK: replace back original embeddings for LLaAA pretraining
        orig_embeds_params = getattr(self, 'orig_embeds_params', None)

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        audio_tower = getattr(self, 'audio_tower', None)
        if audio_tower is not None and (input_ids.shape[1] != 1 or self.training) and audios is not None:
            audio_tower = audio_tower[0]  # HACK: for FSDP
            audio_list=[]
            
            audio_config = audio_tower.config
            for audio in audios:
                with torch.no_grad():
                    audio_feature = audio_tower.encoder(audio).last_hidden_state
           
                audio_feature = audio_feature.view(audio_feature.shape[0], audio_feature.shape[1]//2, 2 * audio_feature.shape[2])
                audio_feature = self.mm_projector1(audio_feature)
                audio_feature = self.asr_transformer_encoder(audio_feature)
                audio_feature = self.out_norm(audio_feature)
                audio_list.append(audio_feature)

            audio_features = torch.stack(audio_list, dim=0)
            batch = audio_features.shape[0]
            audio_turn = audio_features.shape[1]
            audio_features = audio_features.view((batch * audio_turn,)+audio_features.shape[2:])
 
            predict_logits = self.audio_feature_head(audio_features)

            new_input_embeds = []
            label_shift = []
            speech_pos = []
            label_extend = -1
            new_input_ids = []
            tokens = predict_logits.argmax(dim=-1)
            shrink_mask = tokens.roll(1) != tokens
            shrink_mask[:,0] = True
                
            lengths = shrink_mask.long().sum(-1)
            shrink_2d = audio_features[shrink_mask]
            #num_patches = audio_features.shape[1]
            num_patches = audio_config.audio_patch_size
            l_index=0
            shrink_features_raw = []
            for v, audio_feature, mask in zip(lengths, audio_features, ~shrink_mask):
                shrink_feature = shrink_2d[l_index:l_index+v]
                shrink_feature = self.lbm(shrink_feature, audio_feature, bf_shrink_padding_mask=mask)
                shrink_features_raw.append(shrink_feature)
                l_index += v

            shrink_features = []
            for i in range(0, len(shrink_features_raw), audio_turn):
                shrink_features.append(shrink_features_raw[i:i+audio_turn])  
            if self.training: 
                maxn_length = lengths.view(batch,audio_turn).sum(-1).max()
                label_extend = maxn_length - num_patches * audio_turn
                old_seq_length = inputs_embeds.shape[1]
                for cur_input_ids, cur_input_embeds, cur_shrink_features in zip(input_ids, inputs_embeds, shrink_features):
                    pad_ids = torch.full(size=(maxn_length,), fill_value=audio_config.llm_pad_token_id, dtype=torch.long).to(attention_mask.device)
                    pad_embeds = self.embed_tokens(pad_ids)
                    audio_start_token_pos_all = torch.where(cur_input_ids == audio_config.audio_patch_token)[0]
                    #print(cur_input_embeds.shape,cur_input_ids.shape)
                    inner_label_shift = []
                    inner_speech_pos = []
                    for audio_start_token_pos, shrink_feature in reversed(list(zip(audio_start_token_pos_all, cur_shrink_features))): #zip(audio_start_token_pos_all, cur_shrink_features):
                        cur_speech_length = shrink_feature.shape[0]
 
                        cur_input_ids = torch.cat((cur_input_ids[:audio_start_token_pos], 
                          cur_input_ids[audio_start_token_pos: audio_start_token_pos+1].repeat(cur_speech_length), 
                          cur_input_ids[audio_start_token_pos + num_patches:]), dim=0)
                        cur_input_embeds = torch.cat((
                          cur_input_embeds[:audio_start_token_pos],
                          shrink_feature,
                          cur_input_embeds[audio_start_token_pos + num_patches:]), dim=0)
                        inner_label_shift.insert(0, cur_speech_length - num_patches)
                        inner_speech_pos.insert(0, audio_start_token_pos)

                    label_shift = label_shift + inner_label_shift
                    speech_pos = speech_pos + inner_speech_pos

                    cur_new_input_embeds = torch.cat((cur_input_embeds, pad_embeds[:old_seq_length + label_extend - cur_input_embeds.shape[0]]),dim=0)
                    cur_new_input_ids = torch.cat((cur_input_ids, pad_ids[:old_seq_length + label_extend - cur_input_ids.shape[0]]),dim=0)
                    new_input_embeds.append(cur_new_input_embeds)
                    new_input_ids.append(cur_new_input_ids)
                    
                input_ids = torch.stack(new_input_ids, dim=0)
                attention_mask=input_ids.ne(audio_config.llm_pad_token_id)
                inputs_embeds = torch.stack(new_input_embeds, dim=0)

                batch_label_shift = []
                batch_speech_pos=[]
                for i in range(0, len(label_shift), audio_turn):
                    batch_label_shift.append(label_shift[i:i+audio_turn])
                    batch_speech_pos.append(speech_pos[i:i+audio_turn])
            else:
                # Inference mode with batch_size=1
                assert input_ids.shape[0] == 1, "This implementation only supports batch_size=1 during inference"
                
                # Get all audio token positions in this sample
                audio_start_token_positions = torch.where(input_ids[0] == audio_config.audio_patch_token)[0]
                
                # Initialize with original embeddings
                current_embeds = inputs_embeds[0]  # [seq_len, embed_dim]
                current_ids = input_ids[0]         # [seq_len]
                
                # Process each audio token position sequentially
                position_shift = 0  # Track position changes due to expansions
                
                # Ensure shrink_features is properly formatted
                if isinstance(shrink_features[0], list):
                    # If it's a list of lists (batch_size=1 but multiple turns), flatten it
                    shrink_features = [item for sublist in shrink_features for item in sublist]
                
                for pos_idx, audio_pos in enumerate(audio_start_token_positions):
                    adjusted_pos = audio_pos + position_shift
                    
                    # Get corresponding shrink feature (ensure it's a tensor)
                    shrink_feature = shrink_features[pos_idx]
                    if isinstance(shrink_feature, list):
                        shrink_feature = torch.stack(shrink_feature, dim=0)
                    
                    v = shrink_feature.shape[0]  # Now this should work
                    # print('len: ', v)
                    
                    # Expand the input ids and embeddings
                    current_ids = torch.cat([
                        current_ids[:adjusted_pos],
                        current_ids[adjusted_pos:adjusted_pos+1].repeat(v),
                        current_ids[adjusted_pos + num_patches:]
                    ], dim=0)
                    
                    current_embeds = torch.cat([
                        current_embeds[:adjusted_pos],
                        shrink_feature,
                        current_embeds[adjusted_pos + num_patches:]
                    ], dim=0)
                    
                    # Update position shift for next iteration
                    position_shift += (v - num_patches)
                
                # Update the tensors (unsqueeze to restore batch dim)
                input_ids = current_ids.unsqueeze(0)          # [1, new_seq_len]
                inputs_embeds = current_embeds.unsqueeze(0)   # [1, new_seq_len, embed_dim]
                attention_mask = input_ids.ne(audio_config.llm_pad_token_id)
                
                # Update inference state tracking
                if not hasattr(self, 'mask_tensor'):
                    # Initialize with current attention mask
                    self.mask_tensor = attention_mask.clone()
                    self.length = attention_mask.shape[1]
                else:
                    # Ensure mask tensor is on correct device
                    self.mask_tensor = self.mask_tensor.to(attention_mask.device)
                    
                    # Expand mask tensor if needed
                    if self.mask_tensor.shape[1] < attention_mask.shape[1]:
                        new_mask = torch.zeros(1, attention_mask.shape[1], 
                                            dtype=torch.bool,
                                            device=attention_mask.device)
                        new_mask[0, :self.mask_tensor.shape[1]] = self.mask_tensor
                        self.mask_tensor = new_mask
                    
                    # Update mask tensor
                    self.mask_tensor[0, :attention_mask.shape[1]] = attention_mask[0]
                    self.length = attention_mask.shape[1]
        
        attention_mask=self.mask_tensor[:,:self.length]
        self.length+=1
        
        return_state=super(ACLlamaModel, self).forward(
            input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values,
            inputs_embeds=inputs_embeds, use_cache=use_cache,
            output_attentions=output_attentions, output_hidden_states=output_hidden_states,
            return_dict=return_dict
        )
        if self.training and audios is not None:
            return_state["audio_features"] =  predict_logits
            return_state["label_shift"] = batch_label_shift
            return_state["label_extend"] = label_extend
            return_state["speech_pos"] = batch_speech_pos
        #return_state = {"audio_features":predict_logits}
        return return_state 


class ACLlamaForCausalLM(LlamaForCausalLM):
    config_class = ACLlamaConfig

    def __init__(self, config):
        super(LlamaForCausalLM, self).__init__(config)
        self.model = ACLlamaModel(config)

        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # t2u by kkq
        if hasattr(config, "unit_output"):
            self.unit_output = config.unit_output
            self.unit_translator = T2ULlamaForCausalLM(config, self.lm_head.weight)

        # Initialize weights and apply final processing
        self.post_init()

    def get_model(self):
        return self.model
    
    def get_unit_translator(self):
        return self.unit_translator

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        t2u_input_ids: Optional[torch.LongTensor] = None,
        t2u_labels: Optional[torch.LongTensor] = None,
        t2u_attention_mask: Optional[torch.Tensor] = None,
        unit_targets: Optional[torch.Tensor] = None,
        sub_lengths: Optional[torch.Tensor] = None,
        asr_targets: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        audios: Optional[torch.FloatTensor] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        do_task: str = None,
        assistant_after_audio_shifts: Optional[torch.Tensor] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        
        # t2u by kkq
        # pretrain(t2u only) finetune(s2t&e2u)
        do_task = do_task if do_task != None  else getattr(self, 'unit_output', None)

        outputs = None
        hidden_states = None
        new_shift_labels = None
        if do_task != "pretrain":
            outputs = self.model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                past_key_values=past_key_values,
                inputs_embeds=inputs_embeds,
                use_cache=use_cache,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
                audios=audios
            )
        

            hidden_states = outputs[0]
            logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None and do_task != "pretrain" and do_task != "finetune_kd":
            if asr_targets is not None:
                asr_logits = outputs["audio_features"]
                asr_targets = asr_targets.view(asr_targets.shape[0] * asr_targets.shape[1], asr_targets.shape[2])
                mask_asr_targets = (asr_targets != IGNORE_TOKEN_ID)
                target_lengths = mask_asr_targets.sum(1)
                input_lengths = torch.full(size=(asr_logits.shape[0],), fill_value=asr_logits.shape[1], dtype=torch.long)

                loss_ctc = CTCLoss()

                log_probs = F.log_softmax(asr_logits, dim=-1).transpose(0, 1)
                #print(asr_targets.shape)
                #print(input_lengths, target_lengths)

                with torch.backends.cudnn.flags(enabled=False):
                    loss_asr = F.ctc_loss(
                        log_probs,
                        asr_targets,
                        input_lengths,
                        target_lengths,
                        blank=self.model.audio_tower[0].config.audio_patch_token,
                        reduction='mean',
                        zero_infinity=True,
                    )
            else:
                loss_asr=0

            shift_labels = labels
            if "label_shift" in outputs.keys() and len(outputs["label_shift"]) >0:
                if outputs["label_extend"] != -1:
                    new_shift_labels = torch.full(size=(shift_labels.shape[0], outputs["label_extend"]+shift_labels.shape[1]), fill_value=IGNORE_TOKEN_ID, dtype=torch.long).to(shift_labels.device)
                    for batch in range(len(outputs["label_shift"])):
                        it_lable_shift = outputs["label_shift"][batch]
                        it_speech_pos = outputs["speech_pos"][batch]
                        prefix = 0
                        for i in range(len(it_lable_shift)):
                            if i == len(it_lable_shift) - 1:
                                length = shift_labels.shape[1] - it_speech_pos[i] #len(shift_labels[batch]) - it_speech_pos[i]
                            else:
                                length =  it_speech_pos[i + 1] - it_speech_pos[i]
                            prefix += it_lable_shift[i]
                            new_shift_labels[batch][it_speech_pos[i] + prefix: it_speech_pos[i] + length + prefix]= shift_labels[batch][it_speech_pos[i]:it_speech_pos[i]+length]
                    shift_labels = new_shift_labels
                else:
                    raise NotImplementedError

            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = shift_labels[..., 1:].contiguous()
            #print(shift_labels[:,:50])

            #print(shift_labels[:,:150])
            loss_fct = CrossEntropyLoss()
            # Flatten the tokens
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
                    
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)
            loss = loss + 0.3 * loss_asr 

        t2u_output = None
        if do_task != None and do_task != "skip":
            if do_task == "finetune_kd":
                text_start_index = []
                for batch in range(len(outputs["label_shift"])):
                    text_start_index.append(outputs["speech_pos"][batch][0] + outputs["label_shift"][batch][0]+assistant_after_audio_shifts[batch])

                t2u_embeds_output = self.unit_translator.insert_text_embedding(
                    input_ids=t2u_input_ids,
                    attention_mask=t2u_attention_mask,
                    inputs_embeds=None,
                    labels=t2u_labels,
                    text_labels=labels,
                    shift_text_labels=new_shift_labels,
                    shift_text_hidden_states=hidden_states,
                    unit_targets=unit_targets,
                    sub_lengths=sub_lengths,
                    text_start_index=text_start_index,
                    do_task=do_task,
                )

                vae_loss, t2u_inputs_embeds, unit_targets, t2u_attention_mask = t2u_embeds_output

                t2u_output = self.unit_translator(
                    input_ids=None,
                    attention_mask=t2u_attention_mask,
                    past_key_values=past_key_values,
                    inputs_embeds=t2u_inputs_embeds,
                    use_cache=use_cache,
                    labels=unit_targets,
                    output_attentions=output_attentions,
                    output_hidden_states=output_hidden_states,
                    return_dict=return_dict,
                )
            else:
                t2u_embeds_output = self.unit_translator.insert_text_embedding(
                    input_ids=t2u_input_ids,
                    attention_mask=t2u_attention_mask,
                    inputs_embeds=None,
                    labels=t2u_labels,
                    text_labels=labels,
                    shift_text_labels=new_shift_labels,
                    shift_text_hidden_states=hidden_states,
                    do_task=do_task,
                )
                vae_loss, t2u_inputs_embeds = t2u_embeds_output

                t2u_output = self.unit_translator(
                    input_ids=None,
                    attention_mask=t2u_attention_mask,
                    past_key_values=past_key_values,
                    inputs_embeds=t2u_inputs_embeds,
                    use_cache=use_cache,
                    labels=t2u_labels,
                    output_attentions=output_attentions,
                    output_hidden_states=output_hidden_states,
                    return_dict=return_dict,
                )
            t2u_loss = t2u_output[0]
            # print(do_task, t2u_loss, vae_loss)
            if vae_loss != None:
                target_scale = t2u_loss.item() * 0.2
                vae_loss_weight = target_scale / vae_loss.item() if vae_loss > target_scale else 1.0
                t2u_loss = t2u_loss + vae_loss_weight * vae_loss
                #print(vae_loss)

            if loss != None:            # S2T + T2U loss
                # ignore LLM loss
                # t2u_output["loss"] = t2u_loss
                # return t2u_output
                # original version
                assert do_task in ["finetune"]
                if loss.item() < 1.0:   # 1.7
                    loss = 0.2 * loss + t2u_loss * 2.0
                else:
                    loss = loss + t2u_loss
            else:
                assert do_task in ["pretrain", "finetune_kd"]
                t2u_output["loss"] = t2u_loss
                return t2u_output
        
        #return CausalLMOutputWithPast(
        #    loss=loss,
        #    logits=outputs["audio_features"],
        #)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        cache_position=None,
        position_ids=None,
        use_cache=True,
        **kwargs,
    ):
        # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
        # Exception 1: when passing input_embeds, input_ids may be missing entries
        # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
        if past_key_values is not None:
            if inputs_embeds is not None:  # Exception 1
                input_ids = input_ids[:, -cache_position.shape[0] :]
            elif input_ids.shape[1] != cache_position.shape[0]:  # Default case (the "else", a no op, is Exception 2)
                input_ids = input_ids[:, cache_position]

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and cache_position[0] == 0:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids.contiguous()}  # `contiguous()` needed for compilation use cases

        model_inputs.update(
            {
                "position_ids": position_ids,
                "cache_position": cache_position,
                "past_key_values": past_key_values,
                "use_cache": use_cache,
                "attention_mask": attention_mask,
            }
        )
        model_inputs.update({"audios": kwargs["audios"]} if "audios" in kwargs.keys() else {})
        model_inputs.update({"do_task": kwargs["do_task"]} if "do_task" in kwargs.keys() else {})
        model_inputs.update({"return_dict": kwargs["return_dict_in_generate"]} if "return_dict_in_generate" in kwargs.keys() else {})
        return model_inputs

AutoConfig.register("ACLlama", ACLlamaConfig)
AutoModelForCausalLM.register(ACLlamaConfig, ACLlamaForCausalLM)