Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,065 Bytes
30320c9 cf432f5 30320c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
import sys
from ACLlama_el_s2s import ACLlamaForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, AutoConfig, WhisperProcessor
from peft import PeftModel, PeftConfig
import json
from tqdm import tqdm
import torch
import re
import os
torch.backends.cudnn.benchmark = False
import librosa
from text_to_speech import *
import torch.nn.functional as F
from concurrent.futures import ThreadPoolExecutor, as_completed
from transformers import logging as hf_logging
hf_logging.set_verbosity_error()
from huggingface_hub import hf_hub_download
from typing import Dict, Optional, List
import tempfile
import select
from copy import deepcopy
from typing import Generator, Tuple
os.environ["TOKENIZERS_PARALLELISM"] = "true"
def load_model(args, device):
quantization_config = None
hf_token = os.getenv("HF_TOKEN")
# load based model
model = ACLlamaForCausalLM.from_pretrained(
args.base_model_path,
device_map=None,
torch_dtype=torch.float16,
quantization_config=quantization_config,
token=hf_token,
).eval().to(device)
for module in model.model.audio_tower:
module = module.to(device)
if args.peft_model_id:
lora_config = PeftConfig.from_pretrained(args.peft_model_id)
torch.cuda.empty_cache()
model = PeftModel.from_pretrained(model, args.peft_model_id, config=lora_config).to(
dtype=torch.float16, device=device
)
model = model.merge_and_unload()
model.eval()
# load tokenizer
tokenizer = AutoTokenizer.from_pretrained(args.base_model_path, token=hf_token)
audio_config = model.get_model().audio_tower[0].config
audio_config.audio_patch_token = tokenizer.get_vocab()["<audio_patch>"]
audio_config.llm_pad_token_id = tokenizer.pad_token_id
audio_config.audio_patch_size = args.audio_token_len
# whisper processor
audio_processor = WhisperProcessor.from_pretrained(args.audio_tower, torch_dtype=torch.float16)
# t2u
unit_translator = model.get_unit_translator().eval()
return model, audio_processor, tokenizer, unit_translator
def load_speech_model(device):
vocoder = "./vocoder/g_00500000"
vocoder_cfg = "./vocoder/config.json"
voc_cfg = get_vocoder_config(vocoder, vocoder_cfg)
vocoder = load_units_vocoder(voc_cfg, device)
return vocoder, voc_cfg
# def load_speech_model(device):
# hf_token = os.getenv("HF_TOKEN")
# vocoder_repo_id = "FreedomIntelligence/EchoX-Vocoder"
# cache_path = './hf_cache'
# vocoder_path = hf_hub_download(repo_id=vocoder_repo_id, filename="g_00500000", token=hf_token, cache_dir=cache_path)
# vocoder_cfg_path = hf_hub_download(repo_id=vocoder_repo_id, filename="config.json", token=hf_token, cache_dir=cache_path)
# voc_cfg = get_vocoder_config(vocoder_path, vocoder_cfg_path)
# vocoder = load_units_vocoder(voc_cfg, device)
# return vocoder, voc_cfg
class EchoxAssistant():
def __init__(self):
class BasicSetting:
def __init__(self):
self.device = "cuda:0"
self.sampling_rate = 16000
self.audio_token_len = 1 # 1500 = 300 token x 5 compress
self.stop = "</s>"
self.base_model_path = "FreedomIntelligence/EchoX-8B"
self.peft_model_id = None
self.audio_tower = "openai/whisper-large-v3"
self.args = BasicSetting()
self.device = "cuda"
self.vocoder, self.voc_cfg= load_speech_model(self.device)
self.model, self.audio_processor, self.tokenizer, self.unit_translator = load_model(self.args, self.device)
self.audio_executor = ThreadPoolExecutor(max_workers=2)
# self.specAug = SpecAugmentTransform()
# special_token
DEFAULT_AUDIO_PATCH_TOKEN = "<audio_patch>"
audio_placeholder = DEFAULT_AUDIO_PATCH_TOKEN * self.args.audio_token_len
audio_placeholder = "\n"+audio_placeholder
self.audio_placeholder_ids = self.tokenizer(audio_placeholder).input_ids
self.begin_of_text_id = self.tokenizer.get_vocab()["<|begin_of_text|>"]
self.start_header_id = self.tokenizer.get_vocab()["<|start_header_id|>"]
self.end_header_id = self.tokenizer.get_vocab()["<|end_header_id|>"]
self.eot_id = self.tokenizer.get_vocab()["<|eot_id|>"]
self.nl_tokens = self.tokenizer('\n').input_ids
self._system = self.tokenizer('system').input_ids
self._user = self.tokenizer('user').input_ids
self._assistant = self.tokenizer('assistant').input_ids
self._speaker = self.tokenizer('speaker').input_ids
self.max_len = 1024
self.unit_max_len = 2048
self.system_message = "You are a helpful language and speech assistant. You are able to understand the speech content that the user provides, and assist the user with a variety of tasks using natural language."
def _generate_audio_segment(self, segment_hidden_states):
try:
audio_units = self._generate_audio_units_from_hidden_states(segment_hidden_states)
if audio_units:
audio_float32 = self.generate_with_speech_model([list(map(int, audio_units.split(" ")))])
audio_int16 = (audio_float32 * 32767).astype(np.int16)
print(f"Generated audio segment in background: {len(audio_units.split())} units")
return (16000, audio_int16)
return None
except Exception as e:
print(f"Background audio generation error: {e}")
return None
def gen_model_inputs(
self,
sources,
tokenizer,
max_len,
system_message,
audio_placeholder_ids, begin_of_text_id, start_header_id, end_header_id, eot_id, nl_tokens, _system, _user, _assistant,
) -> dict:
# max_len 512
# Apply prompt templates
input_ids, audio_paths = [], []
audio_path = []
for source in sources:
input_id = []
system = [begin_of_text_id] + [start_header_id] + _system + [end_header_id] + nl_tokens + tokenizer(system_message).input_ids + [eot_id]
input_id += system
for j, item in enumerate(source["conversations"]):
role = item["from"]
value = item["value"]
_audio_path = None
if role == 'user':
if "audio" in item.keys():
_input_id = [start_header_id] + _user + [end_header_id] + audio_placeholder_ids + tokenizer(value).input_ids + [eot_id]
_audio_path = item["audio"]
else:
_input_id = [start_header_id] + _user + [end_header_id] + tokenizer(value).input_ids + [eot_id]
elif role == 'assistant':
_input_id = [start_header_id] + _assistant + [end_header_id] + nl_tokens + tokenizer(value).input_ids + [eot_id]
else:
raise NotImplementedError
input_id += _input_id
if _audio_path:
audio_path.append(_audio_path)
assistant_input_id = [start_header_id] + _assistant + [end_header_id] + nl_tokens
input_id += assistant_input_id
audio_num = int(input_id.count(audio_placeholder_ids[-1]) / self.args.audio_token_len)
assert len(audio_path) == audio_num
if len(input_id) >= max_len:
print(f"[WARNING] Your Input Length More Than {max_len}")
input_ids.append(input_id[:max_len])
audio_paths.append(audio_path)
input_ids = torch.tensor(input_ids, dtype=torch.int)
return dict(
input_ids=input_ids,
audio_paths=audio_paths,
attention_mask=input_ids.ne(tokenizer.pad_token_id),
)
def get_unit_result(self, ret):
# print(ret)
self.unit_translator.generation_config.pad_token_id = self.tokenizer.eos_token_id
input_ids = ret["input_ids"]
ret["input_ids"] = None
model_outputs = self.unit_translator.generate(
**ret,
max_new_tokens=2048,
eos_token_id=self.tokenizer.eos_token_id,
)
# print(model_outputs, model_outputs.shape)
output_ids = model_outputs
unit_output = self.tokenizer.batch_decode(output_ids)[0]
if "▁" in unit_output:
unit_output = ''.join(re.findall(r"<\|unit_(.*?)\|>", unit_output))
units = re.findall(r'\d+', unit_output)
#TODO grid of unk unit
new_units = []
for unit in units:
if int(unit) < 1000:
new_units.append(unit)
units = ' '.join(new_units)
return units
def _inference(
self,
prompt,
**kwargs,
):
audio_paths = []
response = []
for item in prompt:
for conv in item["conversations"]:
if "audio" in conv:
audio_paths.append(conv["audio"])
model_inputs = self.gen_model_inputs(
prompt,
self.tokenizer,
self.max_len,
self.system_message,
self.audio_placeholder_ids, self.begin_of_text_id, self.start_header_id, self.end_header_id, self.eot_id, self.nl_tokens, self._system, self._user, self._assistant)
audio_list = []
if audio_paths and audio_paths[0] is not None:
for audio_path in audio_paths:
# print("read audio file name: ", audio_path)
audio, _ = librosa.load(audio_path, sr=self.args.sampling_rate)
audio_feat = self.audio_processor(audio, sampling_rate=self.args.sampling_rate, return_tensors="pt").input_features
audio_list.append(audio_feat)
audio_feats = torch.stack(audio_list, dim=0)
audio_feats = audio_feats.to(dtype=torch.float16).to(self.device)
if not audio_list:
ret = dict(
input_ids=model_inputs["input_ids"].to(self.device),
attention_mask=model_inputs["attention_mask"].to(self.device),
)
else:
ret = dict(
input_ids=model_inputs["input_ids"].to(self.device),
attention_mask=model_inputs["attention_mask"].to(self.device),
audios=audio_feats,
)
self.model.generation_config.pad_token_id = self.tokenizer.eos_token_id
#print(self.model.lm_head.weight.shape)
dot_input_ids = self.tokenizer(".", return_tensors="pt").input_ids.to(self.device) # 形状: (1, 2), 值: [[128000, 13]]
period_token_id = dot_input_ids[0, -1]
period_lm_head_embedding = self.model.lm_head.weight[period_token_id]
input_ids = ret["input_ids"]
attention_mask = ret["attention_mask"]
input_token_len = input_ids.shape[1]
max_new_tokens = kwargs.get('max_new_tokens', 512)
temperature = kwargs.get('temperature', 0.2)
top_p = kwargs.get('top_p', 0.9)
do_sample = kwargs.get('do_sample', True)
current_text = ""
accumulated_hidden_states = []
accumulated_tokens = []
similarity_scores = []
segment_start_idx = 0
current_input_ids = input_ids
current_attention_mask = attention_mask
past_key_values = None
audio_futures = []
segmentation_latency = 5
with torch.no_grad():
for step in range(max_new_tokens):
while audio_futures and audio_futures[0].done():
completed_future = audio_futures.pop(0)
audio_data = completed_future.result()
if audio_data:
yield None, audio_data
if current_input_ids is None:
break
model_kwargs = {
"input_ids": current_input_ids,
"attention_mask": current_attention_mask,
"past_key_values": past_key_values,
"use_cache": True,
"output_hidden_states": True,
"do_task": "skip"
}
if step == 0 and "audios" in ret:
model_kwargs["audios"] = ret["audios"]
outputs = self.model(**model_kwargs)
logits = outputs.logits
hidden_states = outputs.hidden_states[-1]
past_key_values = outputs.past_key_values
next_token_logits = logits[:, -1, :] # [batch_size, vocab_size]
if do_sample:
next_token_logits = next_token_logits / temperature
sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
next_token_logits[indices_to_remove] = float('-inf')
probs = F.softmax(next_token_logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
else:
next_token = torch.argmax(next_token_logits, dim=-1, keepdim=True)
if next_token.item() == self.tokenizer.eos_token_id:
current_input_ids = None
continue
accumulated_tokens.append(next_token.item())
last_hidden_state = hidden_states[0, -1] # [hidden_dim]
accumulated_hidden_states.append(last_hidden_state)
similarity = F.cosine_similarity(last_hidden_state, period_lm_head_embedding, dim=0).item()
similarity_scores.append(similarity)
token_text = self.tokenizer.decode([next_token.item()], skip_special_tokens=True)
current_text += token_text
yield current_text, None
current_idx = len(similarity_scores) - 1
check_idx = current_idx - segmentation_latency
if check_idx >= 0:
similarity_at_check = similarity_scores[check_idx]
is_peak = self._is_local_maximum(similarity_scores, check_idx, window=segmentation_latency)
should_segment = (is_peak and
check_idx - segment_start_idx >= 50) or (
is_peak and
similarity_at_check > 0.1 and
check_idx - segment_start_idx >= 20
)
if should_segment:
segment_end_idx = check_idx + 1
print(f"Segmenting at step {segment_end_idx-1}, similarity={similarity_at_check:.4f}. Submitting to background audio generation.")
segment_hidden_states = torch.stack(
accumulated_hidden_states[segment_start_idx:segment_end_idx], dim=0
).unsqueeze(0)
future = self.audio_executor.submit(self._generate_audio_segment, segment_hidden_states)
audio_futures.append(future)
segment_start_idx = segment_end_idx
current_input_ids = next_token
current_attention_mask = torch.ones_like(next_token)
if segment_start_idx < len(accumulated_hidden_states):
print(f"Processing final segment from {segment_start_idx} to {len(accumulated_hidden_states)}")
segment_hidden_states = torch.stack(
accumulated_hidden_states[segment_start_idx:], dim=0
).unsqueeze(0)
future = self.audio_executor.submit(self._generate_audio_segment, segment_hidden_states)
audio_futures.append(future)
for future in audio_futures:
audio_data = future.result()
if audio_data:
yield None, audio_data
def _is_local_maximum(self, scores, idx, window=5):
start = max(0, idx - window)
end = min(len(scores), idx + window + 1)
local_scores = scores[start:end]
return scores[idx] == max(local_scores)
def _generate_audio_units_from_hidden_states(self, hidden_states):
try:
_, adapted_inputs_embeds = self.unit_translator.insert_text_embedding(
inputs_embeds=hidden_states,
do_task="skip",
)
attention_mask = torch.ones(adapted_inputs_embeds.shape[:2]).to(self.device)
ret = dict(
input_ids=None,
inputs_embeds=adapted_inputs_embeds,
attention_mask=attention_mask,
)
return self.get_unit_result(ret)
except Exception as e:
print(f"Error generating audio units: {e}")
return None
def generate_with_speech_model(self, units):
wav = gen_wav(self.vocoder, self.voc_cfg, units, self.device)
return wav |