File size: 18,065 Bytes
30320c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf432f5
 
30320c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import sys
from ACLlama_el_s2s import ACLlamaForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, AutoConfig, WhisperProcessor
from peft import PeftModel, PeftConfig
import json
from tqdm import tqdm
import torch
import re
import os
torch.backends.cudnn.benchmark = False
import librosa
from text_to_speech import *
import torch.nn.functional as F
from concurrent.futures import ThreadPoolExecutor, as_completed

from transformers import logging as hf_logging
hf_logging.set_verbosity_error()
from huggingface_hub import hf_hub_download
from typing import Dict, Optional, List
import tempfile
import select
from copy import deepcopy
from typing import Generator, Tuple

os.environ["TOKENIZERS_PARALLELISM"] = "true"

def load_model(args, device):
    quantization_config = None
    hf_token = os.getenv("HF_TOKEN")
    
    # load based model
    model = ACLlamaForCausalLM.from_pretrained(
        args.base_model_path,
        device_map=None,
        torch_dtype=torch.float16,
        quantization_config=quantization_config,
        token=hf_token,
    ).eval().to(device)
    for module in model.model.audio_tower:
        module = module.to(device)

    if args.peft_model_id:
        lora_config = PeftConfig.from_pretrained(args.peft_model_id)
        torch.cuda.empty_cache()
        model = PeftModel.from_pretrained(model, args.peft_model_id, config=lora_config).to(
            dtype=torch.float16, device=device
        )
        model = model.merge_and_unload()

    model.eval()

    # load tokenizer
    tokenizer = AutoTokenizer.from_pretrained(args.base_model_path, token=hf_token)

    audio_config = model.get_model().audio_tower[0].config
    audio_config.audio_patch_token = tokenizer.get_vocab()["<audio_patch>"]
    audio_config.llm_pad_token_id = tokenizer.pad_token_id
    audio_config.audio_patch_size = args.audio_token_len


    # whisper processor
    audio_processor = WhisperProcessor.from_pretrained(args.audio_tower, torch_dtype=torch.float16)

    # t2u
    unit_translator = model.get_unit_translator().eval()
    return model, audio_processor, tokenizer, unit_translator

def load_speech_model(device):
    vocoder = "./vocoder/g_00500000"
    vocoder_cfg = "./vocoder/config.json"
    voc_cfg = get_vocoder_config(vocoder, vocoder_cfg)
    vocoder = load_units_vocoder(voc_cfg, device)
    return vocoder, voc_cfg

# def load_speech_model(device):
#     hf_token = os.getenv("HF_TOKEN")
    
#     vocoder_repo_id = "FreedomIntelligence/EchoX-Vocoder"
    
#     cache_path = './hf_cache'
#     vocoder_path = hf_hub_download(repo_id=vocoder_repo_id, filename="g_00500000", token=hf_token, cache_dir=cache_path)
#     vocoder_cfg_path = hf_hub_download(repo_id=vocoder_repo_id, filename="config.json", token=hf_token, cache_dir=cache_path)

#     voc_cfg = get_vocoder_config(vocoder_path, vocoder_cfg_path)
#     vocoder = load_units_vocoder(voc_cfg, device)
#     return vocoder, voc_cfg

class EchoxAssistant():
    def __init__(self):
        class BasicSetting:
            def __init__(self):
                self.device = "cuda:0"
                self.sampling_rate = 16000
                self.audio_token_len = 1  # 1500 = 300 token x 5 compress
                self.stop = "</s>"
                self.base_model_path = "FreedomIntelligence/EchoX-8B"
                self.peft_model_id = None
                self.audio_tower = "openai/whisper-large-v3"
        self.args = BasicSetting()
        self.device = "cuda"
        self.vocoder, self.voc_cfg= load_speech_model(self.device)
        self.model, self.audio_processor, self.tokenizer, self.unit_translator = load_model(self.args, self.device)
        self.audio_executor = ThreadPoolExecutor(max_workers=2)
        # self.specAug = SpecAugmentTransform()
        # special_token
        DEFAULT_AUDIO_PATCH_TOKEN = "<audio_patch>"
        audio_placeholder = DEFAULT_AUDIO_PATCH_TOKEN * self.args.audio_token_len
        audio_placeholder = "\n"+audio_placeholder
        self.audio_placeholder_ids = self.tokenizer(audio_placeholder).input_ids

        self.begin_of_text_id = self.tokenizer.get_vocab()["<|begin_of_text|>"]
        self.start_header_id = self.tokenizer.get_vocab()["<|start_header_id|>"]
        self.end_header_id = self.tokenizer.get_vocab()["<|end_header_id|>"]
        self.eot_id = self.tokenizer.get_vocab()["<|eot_id|>"]
        self.nl_tokens = self.tokenizer('\n').input_ids
        self._system = self.tokenizer('system').input_ids
        self._user = self.tokenizer('user').input_ids
        self._assistant = self.tokenizer('assistant').input_ids
        self._speaker = self.tokenizer('speaker').input_ids

        self.max_len = 1024
        self.unit_max_len = 2048
        self.system_message = "You are a helpful language and speech assistant. You are able to understand the speech content that the user provides, and assist the user with a variety of tasks using natural language."
    
    def _generate_audio_segment(self, segment_hidden_states):
        try:
            audio_units = self._generate_audio_units_from_hidden_states(segment_hidden_states)
            if audio_units:
                audio_float32 = self.generate_with_speech_model([list(map(int, audio_units.split(" ")))])
                audio_int16 = (audio_float32 * 32767).astype(np.int16)

                print(f"Generated audio segment in background: {len(audio_units.split())} units")
                return (16000, audio_int16)
            return None
        except Exception as e:
            print(f"Background audio generation error: {e}")
            return None

    def gen_model_inputs(
            self,
            sources,
            tokenizer,
            max_len,
            system_message,
            audio_placeholder_ids, begin_of_text_id, start_header_id, end_header_id, eot_id, nl_tokens, _system, _user, _assistant,
        ) -> dict:
        # max_len 512

        # Apply prompt templates
        input_ids, audio_paths = [], []
        audio_path = []
        
        for source in sources:
            input_id = []
            system = [begin_of_text_id] + [start_header_id] + _system + [end_header_id] + nl_tokens + tokenizer(system_message).input_ids + [eot_id]
            input_id += system

            for j, item in enumerate(source["conversations"]):
                role = item["from"]
                value = item["value"]
                _audio_path = None

                if role == 'user':
                    if "audio" in item.keys():
                        _input_id = [start_header_id] + _user + [end_header_id] + audio_placeholder_ids + tokenizer(value).input_ids + [eot_id]
                        _audio_path = item["audio"]
                    else:
                        _input_id = [start_header_id] + _user + [end_header_id] + tokenizer(value).input_ids + [eot_id]
                
                elif role == 'assistant':
                    _input_id = [start_header_id] + _assistant + [end_header_id] + nl_tokens + tokenizer(value).input_ids + [eot_id]
                
                else:
                    raise NotImplementedError
                input_id += _input_id

                if _audio_path:
                    audio_path.append(_audio_path)
            assistant_input_id = [start_header_id] + _assistant + [end_header_id] + nl_tokens
            input_id += assistant_input_id

            audio_num = int(input_id.count(audio_placeholder_ids[-1]) / self.args.audio_token_len)
            assert len(audio_path) == audio_num
            if len(input_id) >= max_len:
                print(f"[WARNING] Your Input Length More Than {max_len}")
            input_ids.append(input_id[:max_len])
            audio_paths.append(audio_path)
        input_ids = torch.tensor(input_ids, dtype=torch.int)
        return dict(
            input_ids=input_ids,
            audio_paths=audio_paths,
            attention_mask=input_ids.ne(tokenizer.pad_token_id),
        )

    def get_unit_result(self, ret):
        # print(ret)
        self.unit_translator.generation_config.pad_token_id = self.tokenizer.eos_token_id
        input_ids = ret["input_ids"]
        ret["input_ids"] = None
        model_outputs = self.unit_translator.generate(
            **ret,
            max_new_tokens=2048,
            eos_token_id=self.tokenizer.eos_token_id,
        )
        # print(model_outputs, model_outputs.shape)
        output_ids = model_outputs
        unit_output = self.tokenizer.batch_decode(output_ids)[0]
        if "▁" in unit_output:
            unit_output = ''.join(re.findall(r"<\|unit_(.*?)\|>", unit_output))
            
        units = re.findall(r'\d+', unit_output)

        #TODO grid of unk unit
        new_units = []
        for unit in units:
            if int(unit) < 1000:
                new_units.append(unit)

        units = ' '.join(new_units)
        return units
    

    def _inference(
        self,
        prompt,
        **kwargs,
    ):
        audio_paths = []
        response = []
        for item in prompt:
            for conv in item["conversations"]:
                if "audio" in conv:
                    audio_paths.append(conv["audio"])

        model_inputs = self.gen_model_inputs(
            prompt,
            self.tokenizer,
            self.max_len,
            self.system_message,
            self.audio_placeholder_ids, self.begin_of_text_id, self.start_header_id, self.end_header_id, self.eot_id, self.nl_tokens, self._system, self._user, self._assistant)
        
        audio_list = []
        if audio_paths and audio_paths[0] is not None:
            for audio_path in audio_paths:
                # print("read audio file name: ", audio_path)
                audio, _ = librosa.load(audio_path, sr=self.args.sampling_rate)
                audio_feat = self.audio_processor(audio, sampling_rate=self.args.sampling_rate, return_tensors="pt").input_features
                audio_list.append(audio_feat)
            audio_feats = torch.stack(audio_list, dim=0)
            audio_feats = audio_feats.to(dtype=torch.float16).to(self.device)
        
        if not audio_list:
            ret = dict(
                    input_ids=model_inputs["input_ids"].to(self.device),
                    attention_mask=model_inputs["attention_mask"].to(self.device),
                )
        else:
            ret = dict(
                    input_ids=model_inputs["input_ids"].to(self.device),
                    attention_mask=model_inputs["attention_mask"].to(self.device),
                    audios=audio_feats,
                )    
        
        self.model.generation_config.pad_token_id = self.tokenizer.eos_token_id
        #print(self.model.lm_head.weight.shape)

        dot_input_ids = self.tokenizer(".", return_tensors="pt").input_ids.to(self.device) # 形状: (1, 2), 值: [[128000, 13]]
        period_token_id = dot_input_ids[0, -1]
        period_lm_head_embedding = self.model.lm_head.weight[period_token_id]

        input_ids = ret["input_ids"]
        attention_mask = ret["attention_mask"]
        input_token_len = input_ids.shape[1]

        max_new_tokens = kwargs.get('max_new_tokens', 512)
        temperature = kwargs.get('temperature', 0.2)
        top_p = kwargs.get('top_p', 0.9)
        do_sample = kwargs.get('do_sample', True)
        
        current_text = ""
        accumulated_hidden_states = []
        accumulated_tokens = []
        similarity_scores = []
        segment_start_idx = 0
        
        current_input_ids = input_ids
        current_attention_mask = attention_mask
        past_key_values = None
        
        audio_futures = []
        segmentation_latency = 5

        with torch.no_grad():
            for step in range(max_new_tokens):
                while audio_futures and audio_futures[0].done():
                    completed_future = audio_futures.pop(0)
                    audio_data = completed_future.result()
                    if audio_data:
                        yield None, audio_data
                
                if current_input_ids is None:
                    break

                model_kwargs = {
                    "input_ids": current_input_ids,
                    "attention_mask": current_attention_mask,
                    "past_key_values": past_key_values,
                    "use_cache": True,
                    "output_hidden_states": True,
                    "do_task": "skip"
                }
                
                if step == 0 and "audios" in ret:
                    model_kwargs["audios"] = ret["audios"]
                
                outputs = self.model(**model_kwargs)
                
                logits = outputs.logits
                hidden_states = outputs.hidden_states[-1]
                past_key_values = outputs.past_key_values
                
                next_token_logits = logits[:, -1, :]  # [batch_size, vocab_size]
                
                if do_sample:
                    next_token_logits = next_token_logits / temperature
                    
                    sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True)
                    cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
                    
                    sorted_indices_to_remove = cumulative_probs > top_p
                    sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
                    sorted_indices_to_remove[..., 0] = 0
                    
                    indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
                    next_token_logits[indices_to_remove] = float('-inf')
                    
                    probs = F.softmax(next_token_logits, dim=-1)
                    next_token = torch.multinomial(probs, num_samples=1)
                else:
                    next_token = torch.argmax(next_token_logits, dim=-1, keepdim=True)
                
                if next_token.item() == self.tokenizer.eos_token_id:
                    current_input_ids = None
                    continue

                accumulated_tokens.append(next_token.item())
                last_hidden_state = hidden_states[0, -1]  # [hidden_dim]
                accumulated_hidden_states.append(last_hidden_state)
                
                similarity = F.cosine_similarity(last_hidden_state, period_lm_head_embedding, dim=0).item()
                similarity_scores.append(similarity)
                
                token_text = self.tokenizer.decode([next_token.item()], skip_special_tokens=True)
                current_text += token_text
                
                yield current_text, None
                
                current_idx = len(similarity_scores) - 1
                check_idx = current_idx - segmentation_latency
                if check_idx >= 0:
                    similarity_at_check = similarity_scores[check_idx]
                    is_peak = self._is_local_maximum(similarity_scores, check_idx, window=segmentation_latency)
                    should_segment = (is_peak and
                        check_idx - segment_start_idx >= 50) or (
                        is_peak and
                        similarity_at_check > 0.1 and
                        check_idx - segment_start_idx >= 20
                    )
                    
                    if should_segment:
                        segment_end_idx = check_idx + 1
                        print(f"Segmenting at step {segment_end_idx-1}, similarity={similarity_at_check:.4f}. Submitting to background audio generation.")
                        
                        segment_hidden_states = torch.stack(
                            accumulated_hidden_states[segment_start_idx:segment_end_idx], dim=0
                        ).unsqueeze(0)
                        
                        future = self.audio_executor.submit(self._generate_audio_segment, segment_hidden_states)
                        audio_futures.append(future)
                        
                        segment_start_idx = segment_end_idx
                
                current_input_ids = next_token
                current_attention_mask = torch.ones_like(next_token)
            
            if segment_start_idx < len(accumulated_hidden_states):
                print(f"Processing final segment from {segment_start_idx} to {len(accumulated_hidden_states)}")
                segment_hidden_states = torch.stack(
                    accumulated_hidden_states[segment_start_idx:], dim=0
                ).unsqueeze(0)
                future = self.audio_executor.submit(self._generate_audio_segment, segment_hidden_states)
                audio_futures.append(future)

            for future in audio_futures:
                audio_data = future.result()
                if audio_data:
                    yield None, audio_data

    def _is_local_maximum(self, scores, idx, window=5):
        start = max(0, idx - window)
        end = min(len(scores), idx + window + 1)
        local_scores = scores[start:end]
        return scores[idx] == max(local_scores)

    def _generate_audio_units_from_hidden_states(self, hidden_states):
        try:
            _, adapted_inputs_embeds = self.unit_translator.insert_text_embedding(
                inputs_embeds=hidden_states,
                do_task="skip",
            )
            
            attention_mask = torch.ones(adapted_inputs_embeds.shape[:2]).to(self.device)
            ret = dict(
                input_ids=None,
                inputs_embeds=adapted_inputs_embeds,
                attention_mask=attention_mask,
            )
            
            return self.get_unit_result(ret)
        except Exception as e:
            print(f"Error generating audio units: {e}")
            return None
        
    def generate_with_speech_model(self, units):
        wav = gen_wav(self.vocoder, self.voc_cfg, units, self.device)
        return wav