Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,423 Bytes
30320c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss, CTCLoss
import transformers
from transformers import AutoConfig, AutoModelForCausalLM, \
LlamaConfig, LlamaModel, LlamaForCausalLM
from transformers.trainer_pt_utils import LabelSmoother
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers import (
WhisperProcessor,
WhisperModel,
)
IGNORE_TOKEN_ID = LabelSmoother.ignore_index
def padding_tensor(tensor, length, dim=0, pad=False):
if length == 0:
return tensor
assert length > 0, f"Wrong padding length: {length}"
shape = list(tensor.shape)
assert dim < len(shape), f"dim {dim} out of shape {shape}"
shape[dim] = length
padding_tensor = torch.cat(
(
tensor,
torch.full(tuple(shape), pad, dtype=tensor.dtype, device=tensor.device)
),
dim=dim
)
return padding_tensor
class T2ULlamaConfig(LlamaConfig):
model_type = "T2ULlama"
class T2ULlamaForCausalLM(LlamaForCausalLM):
config_class = T2ULlamaConfig
def __init__(self, config, embedding_weight=None):
self.current_step = 0
self.log = {}
super(LlamaForCausalLM, self).__init__(config)
self.config = config
self.training_stage = config.unit_output
self.pad_token_id = 128009
llama_config = T2ULlamaConfig(**config.to_dict(),
batch_first=True,
norm_first=True
)
llama_config.architectures = ["T2ULlamaForCausalLM"]
llama_config.pad_token_id = self.pad_token_id
llama_config.vocab_size += llama_config.unit_vocab_size
#######################################################
llama_config.unit_model = "medium"
llama_config.max_position_embeddings = 2048 # 1024 1536 2048 # origin 1024 reduced 512
#######################################################
if hasattr(llama_config, "unit_model"):
if llama_config.unit_model == "large":
llama_config.num_hidden_layers = 2
# llama_config.hidden_size = 4096
# llama_config.num_attention_heads = 32
# llama_config.intermediate_size = 14336
# llama_config.head_dim = llama_config.hidden_size // llama_config.num_attention_heads
elif llama_config.unit_model == "tiny":
llama_config.num_hidden_layers = 4
llama_config.hidden_size = 512
llama_config.num_attention_heads = 8
llama_config.intermediate_size = 2048
llama_config.head_dim = llama_config.hidden_size // llama_config.num_attention_heads
else:
llama_config.num_hidden_layers = 8
llama_config.hidden_size = 768
llama_config.num_attention_heads = 12
llama_config.num_key_value_heads = 12
llama_config.intermediate_size = 2048
llama_config.head_dim = llama_config.hidden_size // llama_config.num_attention_heads
else:
llama_config.num_hidden_layers = 6
llama_config.hidden_size = 512
llama_config.num_attention_heads = 8
llama_config.intermediate_size = 2048
llama_config.head_dim = llama_config.hidden_size // llama_config.num_attention_heads
# print(llama_config)
self.model = LlamaModel(llama_config)
# share embedding 0501 by kkq
self.model.embed_tokens = nn.Embedding(num_embeddings=config.vocab_size, embedding_dim=config.hidden_size, padding_idx=self.pad_token_id) # redefine
self.unit_embedding = nn.Linear(config.hidden_size, llama_config.unit_vocab_size, bias=False)
self.adapter = nn.Linear(config.hidden_size, llama_config.hidden_size, bias = True)
self.lm_head = nn.Linear(llama_config.hidden_size, llama_config.vocab_size, bias=False)
if self.training_stage == "pretrain":
pass
elif self.training_stage == "finetune" or self.training_stage == "finetune_kd" or self.training_stage == "finetune_kd_online":
self.aligner_MLP = nn.Sequential(
nn.Linear(config.hidden_size, config.intermediate_size),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(config.intermediate_size, config.hidden_size),
)
torch.nn.init.ones_(self.aligner_MLP[0].weight)
torch.nn.init.zeros_(self.aligner_MLP[0].bias)
torch.nn.init.ones_(self.aligner_MLP[3].weight)
torch.nn.init.zeros_(self.aligner_MLP[3].bias)
# Initialize weights and apply final processing
self.post_init()
def get_model(self):
return self.model
def insert_text_embedding(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
text_labels: Optional[torch.LongTensor] = None,
shift_text_labels: Optional[torch.LongTensor] = None,
shift_text_hidden_states: Optional[torch.FloatTensor] = None,
unit_targets: Optional[torch.LongTensor] = None,
sub_lengths: Optional[torch.LongTensor] = None,
text_start_index: Optional[torch.LongTensor] = None,
do_task: str = None,
**kwargs: dict,
):
if inputs_embeds == None:
# share embedding 0501 by kkq
embed_tokens_weight = torch.cat(
[
self.model.embed_tokens.weight.detach(), self.unit_embedding.weight
],
dim = 0,
)
# print(embed_tokens_weight, embed_tokens_weight.shape)
inputs_embeds = F.embedding(input_ids, embed_tokens_weight, padding_idx=self.pad_token_id)
emb_loss = None
if do_task == "pretrain":
if self.training:
if hasattr(self, "embedding_dropout"):
emb_origin_mask = text_labels != -100
origin_padding_length = labels.shape[-1] - emb_origin_mask.shape[-1]
extend_emb_origin_mask = padding_tensor(emb_origin_mask, origin_padding_length, 1, False)
extend_emb_origin_mask = ~extend_emb_origin_mask.unsqueeze(-1).expand_as(inputs_embeds)
# Π-Model + noise
log_var = self.perturb(inputs_embeds)
perturbed_inputs_embeds_2 = inputs_embeds + torch.randn_like(inputs_embeds) * (torch.exp(0.5 * log_var) + 1e-6)
# Π-Model + dropout
perturbed_inputs_embeds_1 = self.embedding_dropout(inputs_embeds)
perturbed_inputs_embeds_2 = self.embedding_dropout(perturbed_inputs_embeds_2)
perturbed_inputs_embeds_1 = torch.where(extend_emb_origin_mask, inputs_embeds, perturbed_inputs_embeds_1)
perturbed_inputs_embeds_2 = torch.where(extend_emb_origin_mask, inputs_embeds, perturbed_inputs_embeds_2)
inputs_embeds = torch.cat(
(perturbed_inputs_embeds_1, perturbed_inputs_embeds_2),
dim=0,
)
kl_loss = -0.5 * (1 + log_var - log_var.exp()).mean(dim=-1).sum(dim=-1).mean()
contrastive_loss = (1 - F.cosine_similarity(perturbed_inputs_embeds_1, perturbed_inputs_embeds_2, dim=-1)).sum(dim=-1).mean()
emb_loss = kl_loss + contrastive_loss
if kl_loss.device == torch.device("cuda:0"):
self.log["kl_loss"] = kl_loss.item()
self.log["std"] = torch.exp(0.5 * log_var).mean().item()
self.log["contrastive_loss"] = contrastive_loss.item()
pass
elif do_task == "finetune":
inputs_embeds = inputs_embeds.detach()
inputs_embeds_refer = inputs_embeds.clone().detach()
shift_text_hidden_states = self.aligner_MLP(shift_text_hidden_states)
emb_origin_mask = text_labels != -100 # get output text pos
emb_shift_mask = shift_text_labels != -100
origin_padding_length = labels.shape[-1] - emb_origin_mask.shape[-1]
shift_padding_length = labels.shape[-1] - emb_shift_mask.shape[-1]
extend_emb_origin_mask = padding_tensor(emb_origin_mask, origin_padding_length, 1, False)
extend_emb_shift_mask = padding_tensor(emb_shift_mask, shift_padding_length, 1, False)
extend_shift_text_hidden_states = padding_tensor(shift_text_hidden_states, shift_padding_length, 1, 1e-9)
# check
extend_text_labels = padding_tensor(text_labels, origin_padding_length, 1, -100)
extend_shift_text_labels = padding_tensor(shift_text_labels, shift_padding_length, 1, -100)
assert torch.equal(
extend_text_labels[extend_emb_origin_mask],
extend_shift_text_labels[extend_emb_shift_mask]
), "{}\n{}\n{}\n{}".format(labels, extend_emb_origin_mask, extend_shift_text_labels, extend_emb_shift_mask)
inputs_embeds[extend_emb_origin_mask.unsqueeze(-1).expand_as(inputs_embeds)] = \
extend_shift_text_hidden_states[extend_emb_shift_mask.unsqueeze(-1).expand_as(extend_shift_text_hidden_states)].to(dtype=inputs_embeds.dtype)
if self.training:
contrastive_loss = (1 - F.cosine_similarity(inputs_embeds, inputs_embeds_refer, dim=-1)).sum(-1).mean()
emb_loss = contrastive_loss
if emb_loss.device == torch.device("cuda:0"):
self.log["contrastive_loss"] = contrastive_loss.item()
pass
elif do_task == "finetune_kd" :
#inputs_embeds = inputs_embeds.detach()
#inputs_embeds_refer = inputs_embeds.clone().detach()
#print(text_labels)
#print(sub_lengths.sum())
emb_origin_mask = text_labels != -100
fetch_lables_list = []
for batch in range(emb_origin_mask.shape[0]):
fetch_lables_list.append(text_labels[batch][emb_origin_mask[batch]])
shift_text_hidden_states = self.aligner_MLP(shift_text_hidden_states)
#split the shift_text_hidden_states
#[128006, 128000, 78191, 128007, 128000, 198, 128000]
maxn_length = sub_lengths.max() + 8
pad_ids = torch.full(size=(sub_lengths.shape[0], sub_lengths.shape[1], maxn_length), fill_value=self.pad_token_id, dtype=torch.long).to(shift_text_hidden_states.device)
pad_text_ids = torch.full(size=(sub_lengths.shape[0], sub_lengths.shape[1], maxn_length), fill_value=self.pad_token_id, dtype=torch.long).to(shift_text_hidden_states.device)
atten_mask = pad_ids.ne(self.pad_token_id)
#target_mask_part1 = pad_ids.ne(self.pad_token_id)
shift_text_hidden_states_slice = F.embedding(pad_ids, embed_tokens_weight, padding_idx=self.pad_token_id)
#print(shift_text_hidden_states_slice.shape,shift_text_hidden_states.shape)
for batch in range(sub_lengths.shape[0]):
cot=0
start_index = text_start_index[batch]
for index, sub_length in enumerate(sub_lengths[batch]):
if sub_length==-1:
break
#print(shift_text_hidden_states_slice[batch][index][:sub_length].shape, shift_text_hidden_states[batch][cot:cot+sub_length].shape)
eos_id = torch.IntTensor([128009]).to(inputs_embeds.device)
eos = self.model.embed_tokens(eos_id)
if index == 0:
text_prefix_ids = torch.IntTensor([128006, 128000, 65576, 128007, 128000, 198]).to(inputs_embeds.device)
preifx_embed = self.model.embed_tokens(text_prefix_ids)
pad_text_ids[batch][index][:sub_length+7] = torch.cat([text_prefix_ids, fetch_lables_list[batch][cot:cot+sub_length], eos_id],dim=0)
atten_mask[batch][index][:sub_length+7]=True
else:
text_prefix_ids = torch.IntTensor([128006, 128000, 65576, 128007, 128000, 198, 12800]).to(inputs_embeds.device)
preifx_embed = self.model.embed_tokens(text_prefix_ids)
pad_text_ids[batch][index][:sub_length+8] = torch.cat([text_prefix_ids, fetch_lables_list[batch][cot:cot+sub_length], eos_id], dim=0)
atten_mask[batch][index][:sub_length+8]=True
new_shift_text_hidden_states = torch.cat([preifx_embed, shift_text_hidden_states[batch][start_index+cot:start_index+cot+sub_length], eos], dim = 0)
shift_text_hidden_states_slice[batch][index][:new_shift_text_hidden_states.shape[0]] = new_shift_text_hidden_states
cot+=sub_length
shift_text_hidden_states_slice = shift_text_hidden_states_slice.reshape(shift_text_hidden_states_slice.shape[0]*shift_text_hidden_states_slice.shape[1],shift_text_hidden_states_slice.shape[2],shift_text_hidden_states_slice.shape[3])
padding_unit_targets = unit_targets.clone()
padding_unit_targets = torch.where(padding_unit_targets == IGNORE_TOKEN_ID, self.pad_token_id, padding_unit_targets)
target_mask_part = padding_unit_targets.ne(self.pad_token_id)
atten_mask = torch.cat([atten_mask, target_mask_part], dim = -1)
atten_mask = atten_mask.reshape(atten_mask.shape[0]*atten_mask.shape[1],atten_mask.shape[2])
pad_text_ids = pad_text_ids.reshape(pad_text_ids.shape[0]*pad_text_ids.shape[1],pad_text_ids.shape[2])
shift_text_embeddings = F.embedding(pad_text_ids, embed_tokens_weight, padding_idx=self.pad_token_id)
unit_target_slice = F.embedding(padding_unit_targets, embed_tokens_weight, padding_idx=self.pad_token_id)
# unit_target_slice = F.embedding(unit_targets, embed_tokens_weight, padding_idx=self.pad_token_id)
unit_target_slice = unit_target_slice.reshape(unit_target_slice.shape[0]*unit_target_slice.shape[1],unit_target_slice.shape[2],unit_target_slice.shape[3])
inputs_embeds = torch.cat([shift_text_hidden_states_slice, unit_target_slice], dim = 1)
ignore_ids = torch.full(size=(sub_lengths.shape[0], sub_lengths.shape[1], maxn_length), fill_value=IGNORE_TOKEN_ID, dtype=torch.long).to(shift_text_hidden_states.device)
unit_targets = torch.cat([ignore_ids,unit_targets],dim=-1)
unit_targets = unit_targets.reshape(unit_targets.shape[0]*unit_targets.shape[1],unit_targets.shape[2])
if self.training:
#print(shift_text_hidden_states_slice.shape, shift_text_embeddings.shape)
contrastive_loss = (1 - F.cosine_similarity(shift_text_hidden_states_slice, shift_text_embeddings, dim=-1)).sum(-1).mean()
emb_loss = contrastive_loss
if emb_loss.device == torch.device("cuda:0"):
self.log["contrastive_loss"] = contrastive_loss.item()
elif do_task == "finetune_kd_online":
shift_text_hidden_states = self.aligner_MLP(shift_text_hidden_states)
gold_inputs_embeds = inputs_embeds.clone()
for batch in range (inputs_embeds.shape[0]):
start_index = text_start_index[batch]
for slice_index in range (inputs_embeds.shape[1]):
sub_length= sub_lengths[batch][slice_index]
inputs_embeds[batch][slice_index][7:7+sub_length] = shift_text_hidden_states[batch][start_index+1:start_index+1+sub_length]
start_index += sub_length
if self.training:
#print(shift_text_hidden_states_slice.shape, shift_text_embeddings.shape)
contrastive_loss = ((1 - F.cosine_similarity(inputs_embeds, gold_inputs_embeds, dim=-1)) * attention_mask).sum(-1).mean()
emb_loss = contrastive_loss
if emb_loss.device == torch.device("cuda:0"):
self.log["contrastive_loss"] = contrastive_loss.item()
unit_embeds = F.embedding(unit_targets, embed_tokens_weight, padding_idx=self.pad_token_id)
inputs_embeds = torch.cat([inputs_embeds,unit_embeds], dim=2)
else:
inputs_embeds = self.aligner_MLP(inputs_embeds)
#[start_header_id] + _speaker + [end_header_id] + nl_tokens only for batch one!
units_ids = torch.IntTensor([[128009, 128006, 128000, 65576, 128007, 128000, 198]]).to(inputs_embeds.device)
units_prefix = self.model.embed_tokens(units_ids)
text_ids = torch.IntTensor([[128006, 128000, 65576, 128007, 128000, 198, 12800]]).to(inputs_embeds.device)
text_prefix = self.model.embed_tokens(text_ids)
inputs_embeds = torch.cat([text_prefix, inputs_embeds, units_prefix], dim = 1)
inputs_embeds = self.adapter(inputs_embeds)
if do_task == "finetune_kd":
return (emb_loss, inputs_embeds, unit_targets, atten_mask,)
else:
return (emb_loss, inputs_embeds)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if inputs_embeds == None:
# inputs_embeds = self.model.embed_tokens(input_ids)
# share embedding 0501 by kkq
embed_tokens_weight = torch.cat(
[
self.model.embed_tokens.weight.detach(), self.unit_embedding.weight
],
dim = 0,
)
# print(embed_tokens_weight, embed_tokens_weight.shape)
inputs_embeds = F.embedding(input_ids, embed_tokens_weight, padding_idx=self.pad_token_id)
inputs_embeds = self.adapter(inputs_embeds)
outputs = self.model(
input_ids=None,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
cr_loss = None
if labels != None:
shift_labels = labels
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = shift_labels[..., 1:].contiguous()
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, (self.config.vocab_size + self.config.unit_vocab_size))
shift_labels = shift_labels.view(-1)
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if loss.device == torch.device("cuda:0"):
self.log["unit_loss"] = loss.item()
if cr_loss != None:
target_scale = loss.item() * 0.2
cr_loss_weight = target_scale / cr_loss.item() if cr_loss > target_scale else 1.0
loss = loss + cr_loss_weight * cr_loss
if loss.device == torch.device("cuda:0") and (self.current_step - 10) % 100 == 0:
print(self.log, loss.device)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
AutoConfig.register("T2ULlama", T2ULlamaConfig)
AutoModelForCausalLM.register(T2ULlamaConfig, T2ULlamaForCausalLM) |