Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,709 Bytes
30320c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
from fairseq.dataclass.configs import FairseqConfig
from fairseq import utils
from fairseq.models.text_to_speech.vocoder import CodeHiFiGANVocoder
from fairseq import checkpoint_utils, options, tasks, utils
from fairseq.distributed import utils as distributed_utils
import torch
import json
from tqdm import tqdm
import random
import soundfile as sf
import numpy as np
import ast
import time
import math
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.token_generation_constraints import pack_constraints, unpack_constraints
from fairseq_cli.generate import get_symbols_to_strip_from_output
from collections import namedtuple
import sys
from argparse import Namespace
import argparse
import sentencepiece as spm
import re
Batch = namedtuple("Batch", "ids src_tokens src_lengths constraints")
Translation = namedtuple("Translation", "src_str hypos pos_scores alignments")
def make_batches(lines, cfg, task, max_positions, encode_fn):
def encode_fn_target(x):
return encode_fn(x)
if cfg.generation.constraints:
# Strip (tab-delimited) contraints, if present, from input lines,
# store them in batch_constraints
batch_constraints = [list() for _ in lines]
for i, line in enumerate(lines):
if "\t" in line:
lines[i], *batch_constraints[i] = line.split("\t")
# Convert each List[str] to List[Tensor]
for i, constraint_list in enumerate(batch_constraints):
batch_constraints[i] = [
task.target_dictionary.encode_line(
encode_fn_target(constraint),
append_eos=False,
add_if_not_exist=False,
)
for constraint in constraint_list
]
if cfg.generation.constraints:
constraints_tensor = pack_constraints(batch_constraints)
else:
constraints_tensor = None
tokens, lengths = task.get_interactive_tokens_and_lengths(lines, encode_fn)
itr = task.get_batch_iterator(
dataset=task.build_dataset_for_inference(
tokens, lengths, constraints=constraints_tensor
),
max_tokens=cfg.dataset.max_tokens,
max_sentences=cfg.dataset.batch_size,
max_positions=max_positions,
ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test,
).next_epoch_itr(shuffle=False)
for batch in itr:
ids = batch["id"]
src_tokens = batch["net_input"]["src_tokens"]
src_lengths = batch["net_input"]["src_lengths"]
constraints = batch.get("constraints", None)
yield Batch(
ids=ids,
src_tokens=src_tokens,
src_lengths=src_lengths,
constraints=constraints,
)
def tokenize(inputs, sp):
text = re.sub(r'[^\w\s]', '', inputs.lower())
inputs = ' '.join(sp.EncodeAsPieces(text))
# print(inputs)
return inputs
def get_t2u_config(model, beam=5):
sys.argv = [
"fairseq-interactive",
"libri_t2u",
"--path", model,
"--gen-subset", "valid",
"--max-len-b", "1024",
"--max-source-positions", "500",
"--max-target-positions", "1024",
"--beam", str(beam),
"--results-path", "decode"
]
parser = options.get_interactive_generation_parser()
args = options.parse_args_and_arch(parser)
# distributed_utils.call_main(convert_namespace_to_omegaconf(args), load_text2units_model)
return convert_namespace_to_omegaconf(args)
def load_text2units_model(cfg: FairseqConfig, device):
if isinstance(cfg, Namespace):
cfg = convert_namespace_to_omegaconf(cfg)
utils.import_user_module(cfg.common)
if cfg.interactive.buffer_size < 1:
cfg.interactive.buffer_size = 1
if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None:
cfg.dataset.batch_size = 1
assert (
not cfg.generation.sampling or cfg.generation.nbest == cfg.generation.beam
), "--sampling requires --nbest to be equal to --beam"
assert (
not cfg.dataset.batch_size
or cfg.dataset.batch_size <= cfg.interactive.buffer_size
), "--batch-size cannot be larger than --buffer-size"
# Fix seed for stochastic decoding
if cfg.common.seed is not None and not cfg.generation.no_seed_provided:
np.random.seed(cfg.common.seed)
utils.set_torch_seed(cfg.common.seed)
use_cuda = torch.cuda.is_available() and not cfg.common.cpu
# Setup task, e.g., translation
task = tasks.setup_task(cfg.task)
# Load ensemble
overrides = ast.literal_eval(cfg.common_eval.model_overrides)
models, _model_args = checkpoint_utils.load_model_ensemble(
utils.split_paths(cfg.common_eval.path),
arg_overrides=overrides,
task=task,
suffix=cfg.checkpoint.checkpoint_suffix,
strict=(cfg.checkpoint.checkpoint_shard_count == 1),
num_shards=cfg.checkpoint.checkpoint_shard_count,
)
# Set dictionaries
src_dict = task.source_dictionary
tgt_dict = task.target_dictionary
# Optimize ensemble for generation
for model in models:
if model is None:
continue
if cfg.common.fp16:
model.half()
if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
model.cuda()
model.prepare_for_inference_(cfg)
# Initialize generator
generator = task.build_generator(models, cfg.generation)
# Handle tokenization and BPE
tokenizer = task.build_tokenizer(cfg.tokenizer)
bpe = task.build_bpe(cfg.bpe)
return {
"models": models,
"generator": generator,
"tokenizer": tokenizer,
"bpe": bpe,
"task": task,
"src_dict": src_dict,
"tgt_dict": tgt_dict,
"use_cuda": use_cuda
}
def gen_units(model, cfg, inputs):
inputs = [inputs]
models = model['models']
generator = model['generator']
tokenizer = model['tokenizer']
bpe = model['bpe']
task = model['task']
src_dict = model['src_dict']
tgt_dict = model['tgt_dict']
use_cuda = model['use_cuda']
def encode_fn(x):
if tokenizer is not None:
x = tokenizer.encode(x)
if bpe is not None:
x = bpe.encode(x)
return x
def decode_fn(x):
if bpe is not None:
x = bpe.decode(x)
if tokenizer is not None:
x = tokenizer.decode(x)
return x
align_dict = utils.load_align_dict(cfg.generation.replace_unk)
max_positions = utils.resolve_max_positions(
task.max_positions(), *[model.max_positions() for model in models]
)
start_id = 0
results = []
for batch in make_batches(inputs, cfg, task, max_positions, encode_fn):
print("[INFO_DEBUG]", batch)
bsz = batch.src_tokens.size(0)
src_tokens = batch.src_tokens
src_lengths = batch.src_lengths
constraints = batch.constraints
if use_cuda:
src_tokens = src_tokens.cuda()
src_lengths = src_lengths.cuda()
if constraints is not None:
constraints = constraints.cuda()
sample = {
"net_input": {
"src_tokens": src_tokens,
"src_lengths": src_lengths,
},
}
translate_start_time = time.time()
translations = task.inference_step(
generator, models, sample, constraints=constraints
)
translate_time = time.time() - translate_start_time
list_constraints = [[] for _ in range(bsz)]
if cfg.generation.constraints:
list_constraints = [unpack_constraints(c) for c in constraints]
for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)):
src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad())
constraints = list_constraints[i]
results.append(
(
start_id + id,
src_tokens_i,
hypos,
{
"constraints": constraints,
"time": translate_time / len(translations),
},
)
)
# print(results)
units = []
for id_, _, hypos, info in sorted(results, key=lambda x: x[0]):
print("W-{}\t{:.3f}\tseconds".format(id_, info["time"]))
# Process top predictions
for hypo in hypos[: min(len(hypos), cfg.generation.nbest)]:
hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
hypo_tokens=hypo["tokens"].int().cpu(),
src_str="",
alignment=hypo["alignment"],
align_dict=align_dict,
tgt_dict=tgt_dict,
remove_bpe=cfg.common_eval.post_process,
extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator),
)
units.append(list(map(int, hypo_str.split(' '))))
return units
def get_vocoder_config(vocoder, config):
args = argparse.Namespace(
vocoder=vocoder,
vocoder_cfg=config,
dur_prediction=True,
speaker_id=1,
cpu=False
)
return args
def load_units_vocoder(args, device):
with open(args.vocoder_cfg) as f:
vocoder_cfg = json.load(f)
vocoder = CodeHiFiGANVocoder(args.vocoder, vocoder_cfg).to(device)
multispkr = vocoder.model.multispkr
if multispkr:
num_speakers = vocoder_cfg.get(
"num_speakers", 200
) # following the default in codehifigan to set to 200
assert (
args.speaker_id < num_speakers
), f"invalid --speaker-id ({args.speaker_id}) with total #speakers = {num_speakers}"
return vocoder, num_speakers if multispkr else 1, 'cuda' in device
def gen_wav(vocoder, args, data, device):
vocoder, num_speakers, use_cuda = vocoder
res = []
for i, d in enumerate(data): # tqdm is removed for cleaner streaming
x = {
"code": torch.LongTensor(d).view(1, -1).to(device),
}
suffix = ""
multispkr = vocoder.model.multispkr
if multispkr:
spk = (
random.randint(0, num_speakers - 1)
if args.speaker_id == -1
else args.speaker_id
)
suffix = f"_spk{spk}"
x["spkr"] = torch.LongTensor([spk]).view(1, 1)
x = utils.move_to_cuda(x) if use_cuda else x
wav = vocoder(x, args.dur_prediction).detach().cpu().numpy()
res.append(wav)
return res[0] |