GRATITUD3 chaoxu commited on
Commit
9d5fb29
·
0 Parent(s):

Duplicate from One-2-3-45/One-2-3-45

Browse files

Co-authored-by: Chao Xu <[email protected]>

Files changed (41) hide show
  1. .gitattributes +36 -0
  2. .gitignore +4 -0
  3. README.md +49 -0
  4. app.py +652 -0
  5. demo_examples/00_zero123_lysol.png +3 -0
  6. demo_examples/01_wild_hydrant.png +3 -0
  7. demo_examples/02_zero123_spyro.png +3 -0
  8. demo_examples/03_wild2_pineapple_bottle.png +3 -0
  9. demo_examples/04_unsplash_broccoli.png +3 -0
  10. demo_examples/05_objaverse_backpack.png +3 -0
  11. demo_examples/06_unsplash_chocolatecake.png +3 -0
  12. demo_examples/07_unsplash_stool2.png +3 -0
  13. demo_examples/08_dalle_icecream.png +3 -0
  14. demo_examples/09_unsplash_bigmac.png +3 -0
  15. demo_examples/10_dalle3_blueberryicecream2.png +3 -0
  16. demo_examples/11_GSO_Crosley_Alarm_Clock_Vintage_Metal.png +3 -0
  17. demo_examples/12_realfusion_cactus_1.png +3 -0
  18. demo_examples/13_realfusion_cherry_1.png +3 -0
  19. demo_examples/14_dalle_cowbear.png +3 -0
  20. demo_examples/15_dalle3_gramophone1.png +3 -0
  21. demo_examples/16_dalle3_mushroom2.png +3 -0
  22. demo_examples/17_dalle3_rockingchair1.png +3 -0
  23. demo_examples/18_unsplash_mario.png +3 -0
  24. demo_examples/19_dalle3_stump1.png +3 -0
  25. demo_examples/20_objaverse_stool.png +3 -0
  26. demo_examples/21_objaverse_barrel.png +3 -0
  27. demo_examples/22_unsplash_boxtoy.png +3 -0
  28. demo_examples/23_objaverse_tank.png +3 -0
  29. demo_examples/24_wild2_yellow_duck.png +3 -0
  30. demo_examples/25_unsplash_teapot.png +3 -0
  31. demo_examples/26_unsplash_strawberrycake.png +3 -0
  32. demo_examples/27_objaverse_robocat.png +3 -0
  33. demo_examples/28_wild_goose_chef.png +3 -0
  34. demo_examples/29_wild_peroxide.png +3 -0
  35. demo_tmp/.gitignore +1 -0
  36. demo_tmp/.gitkeep +0 -0
  37. instructions_12345.md +10 -0
  38. packages.txt +1 -0
  39. requirements.txt +68 -0
  40. style.css +13 -0
  41. unsafe.png +3 -0
.gitattributes ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.png filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ weights/
2
+ data/
3
+ *.ipynb
4
+ demo_examples_*
README.md ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: One-2-3-45
3
+ emoji: 📸🚀🌟
4
+ colorFrom: red
5
+ colorTo: yellow
6
+ sdk: gradio
7
+ sdk_version: 3.40.1
8
+ app_file: app.py
9
+ pinned: true
10
+ license: mit
11
+ duplicated_from: One-2-3-45/One-2-3-45
12
+ ---
13
+
14
+ # One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization
15
+
16
+ <div>
17
+ <a style="display:inline-block" href="http://one-2-3-45.com"><img src="https://img.shields.io/badge/Project_Homepage-f9f7f7?logo="></a>
18
+ <a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2306.16928"><img src="https://img.shields.io/badge/2306.16928-f9f7f7?logo="></a>
19
+ <a style="display:inline-block; margin-left: .5em" href='https://github.com/One-2-3-45/One-2-3-45'><img src='https://img.shields.io/github/stars/One-2-3-45/One-2-3-45?style=social' /></a>
20
+ </div>
21
+
22
+
23
+ This space hosts the demo for [One-2-3-45](http://One-2-3-45.com), powered by the [inference model](https://huggingface.co/One-2-3-45/code).
24
+
25
+ Please refer to our [GitHub repo](https://github.com/One-2-3-45/One-2-3-45) for full code release.
26
+
27
+ ## Local Deployment of the Demo
28
+ ```bash
29
+ # Minimum GPU: NVIDIA A10 or RTX 3090
30
+ # 1. Install the requirements
31
+ sudo apt-get install libsparsehash-dev
32
+ pip install -r requirements.txt
33
+
34
+ # 2. Run the demo
35
+ python app.py
36
+ ```
37
+
38
+ ## Citation
39
+
40
+ ```bibtex
41
+ @misc{liu2023one2345,
42
+ title={One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization},
43
+ author={Minghua Liu and Chao Xu and Haian Jin and Linghao Chen and Mukund Varma T and Zexiang Xu and Hao Su},
44
+ year={2023},
45
+ eprint={2306.16928},
46
+ archivePrefix={arXiv},
47
+ primaryClass={cs.CV}
48
+ }
49
+ ```
app.py ADDED
@@ -0,0 +1,652 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, sys
2
+ from huggingface_hub import snapshot_download
3
+
4
+ is_local_run = False
5
+
6
+ code_dir = snapshot_download("One-2-3-45/code") if not is_local_run else "../code" # , token=os.environ['TOKEN']
7
+
8
+ sys.path.append(code_dir)
9
+
10
+ elev_est_dir = os.path.abspath(os.path.join(code_dir, "one2345_elev_est"))
11
+ sys.path.append(elev_est_dir)
12
+
13
+ if not is_local_run:
14
+ import pip
15
+ pip.main(['install', elev_est_dir])
16
+ # export TORCH_CUDA_ARCH_LIST="7.0;7.2;8.0;8.6"
17
+ # export IABN_FORCE_CUDA=1
18
+ os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
19
+ os.environ["IABN_FORCE_CUDA"] = "1"
20
+ os.environ["FORCE_CUDA"] = "1"
21
+ pip.main(["install", "inplace_abn"])
22
+ # FORCE_CUDA=1 pip install --no-cache-dir git+https://github.com/mit-han-lab/[email protected]
23
+ pip.main(["install", "--no-cache-dir", "git+https://github.com/mit-han-lab/[email protected]"])
24
+
25
+ import shutil
26
+ import torch
27
+ import fire
28
+ import gradio as gr
29
+ import numpy as np
30
+ import plotly.graph_objects as go
31
+ from functools import partial
32
+
33
+ import cv2
34
+ from PIL import Image
35
+ import trimesh
36
+ import tempfile
37
+ from zero123_utils import init_model, predict_stage1_gradio, zero123_infer
38
+ from sam_utils import sam_init, sam_out_nosave
39
+ from utils import image_preprocess_nosave, gen_poses
40
+ from one2345_elev_est.tools.estimate_wild_imgs import estimate_elev
41
+ from rembg import remove
42
+
43
+ _GPU_INDEX = 0
44
+
45
+ _TITLE = '''One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization'''
46
+
47
+
48
+ # <a style="display:inline-block; margin-left: 1em" href="https://arxiv.org/abs/2306.16928"><img src="https://img.shields.io/badge/arXiv-2306.16928-b31b1b.svg"></a>
49
+ _DESCRIPTION = '''
50
+ <div>
51
+ <a style="display:inline-block" href="http://one-2-3-45.com"><img src="https://img.shields.io/badge/Project_Homepage-f9f7f7?logo="></a>
52
+ <a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2306.16928"><img src="https://img.shields.io/badge/2306.16928-f9f7f7?logo="></a>
53
+ <a style="display:inline-block; margin-left: .5em" href='https://github.com/One-2-3-45/One-2-3-45'><img src='https://img.shields.io/github/stars/One-2-3-45/One-2-3-45?style=social' /></a>
54
+ </div>
55
+ We reconstruct a 3D textured mesh from a single image by initially predicting multi-view images and then lifting them to 3D.
56
+ '''
57
+ _USER_GUIDE = "Please upload an image in the block above (or choose an example above) and click **Run Generation**."
58
+ _BBOX_1 = "Predicting bounding box for the input image..."
59
+ _BBOX_2 = "Bounding box adjusted. Continue adjusting or **Run Generation**."
60
+ _BBOX_3 = "Bounding box predicted. Adjust it using sliders or **Run Generation**."
61
+ _SAM = "Preprocessing the input image... (safety check, SAM segmentation, *etc*.)"
62
+ _GEN_1 = "Predicting multi-view images... (may take \~13 seconds) <br> Images will be shown in the bottom right blocks."
63
+ _GEN_2 = "Predicting nearby views and generating mesh... (may take \~33 seconds) <br> Mesh will be shown on the right."
64
+ _DONE = "Done! Mesh is shown on the right. <br> If it is not satisfactory, please select **Retry view** checkboxes for inaccurate views and click **Regenerate selected view(s)** at the bottom."
65
+ _REGEN_1 = "Selected view(s) are regenerated. You can click **Regenerate nearby views and mesh**. <br> Alternatively, if the regenerated view(s) are still not satisfactory, you can repeat the previous step (select the view and regenerate)."
66
+ _REGEN_2 = "Regeneration done. Mesh is shown on the right."
67
+
68
+
69
+ def calc_cam_cone_pts_3d(polar_deg, azimuth_deg, radius_m, fov_deg):
70
+ '''
71
+ :param polar_deg (float).
72
+ :param azimuth_deg (float).
73
+ :param radius_m (float).
74
+ :param fov_deg (float).
75
+ :return (5, 3) array of float with (x, y, z).
76
+ '''
77
+ polar_rad = np.deg2rad(polar_deg)
78
+ azimuth_rad = np.deg2rad(azimuth_deg)
79
+ fov_rad = np.deg2rad(fov_deg)
80
+ polar_rad = -polar_rad # NOTE: Inverse of how used_x relates to x.
81
+
82
+ # Camera pose center:
83
+ cam_x = radius_m * np.cos(azimuth_rad) * np.cos(polar_rad)
84
+ cam_y = radius_m * np.sin(azimuth_rad) * np.cos(polar_rad)
85
+ cam_z = radius_m * np.sin(polar_rad)
86
+
87
+ # Obtain four corners of camera frustum, assuming it is looking at origin.
88
+ # First, obtain camera extrinsics (rotation matrix only):
89
+ camera_R = np.array([[np.cos(azimuth_rad) * np.cos(polar_rad),
90
+ -np.sin(azimuth_rad),
91
+ -np.cos(azimuth_rad) * np.sin(polar_rad)],
92
+ [np.sin(azimuth_rad) * np.cos(polar_rad),
93
+ np.cos(azimuth_rad),
94
+ -np.sin(azimuth_rad) * np.sin(polar_rad)],
95
+ [np.sin(polar_rad),
96
+ 0.0,
97
+ np.cos(polar_rad)]])
98
+
99
+ # Multiply by corners in camera space to obtain go to space:
100
+ corn1 = [-1.0, np.tan(fov_rad / 2.0), np.tan(fov_rad / 2.0)]
101
+ corn2 = [-1.0, -np.tan(fov_rad / 2.0), np.tan(fov_rad / 2.0)]
102
+ corn3 = [-1.0, -np.tan(fov_rad / 2.0), -np.tan(fov_rad / 2.0)]
103
+ corn4 = [-1.0, np.tan(fov_rad / 2.0), -np.tan(fov_rad / 2.0)]
104
+ corn1 = np.dot(camera_R, corn1)
105
+ corn2 = np.dot(camera_R, corn2)
106
+ corn3 = np.dot(camera_R, corn3)
107
+ corn4 = np.dot(camera_R, corn4)
108
+
109
+ # Now attach as offset to actual 3D camera position:
110
+ corn1 = np.array(corn1) / np.linalg.norm(corn1, ord=2)
111
+ corn_x1 = cam_x + corn1[0]
112
+ corn_y1 = cam_y + corn1[1]
113
+ corn_z1 = cam_z + corn1[2]
114
+ corn2 = np.array(corn2) / np.linalg.norm(corn2, ord=2)
115
+ corn_x2 = cam_x + corn2[0]
116
+ corn_y2 = cam_y + corn2[1]
117
+ corn_z2 = cam_z + corn2[2]
118
+ corn3 = np.array(corn3) / np.linalg.norm(corn3, ord=2)
119
+ corn_x3 = cam_x + corn3[0]
120
+ corn_y3 = cam_y + corn3[1]
121
+ corn_z3 = cam_z + corn3[2]
122
+ corn4 = np.array(corn4) / np.linalg.norm(corn4, ord=2)
123
+ corn_x4 = cam_x + corn4[0]
124
+ corn_y4 = cam_y + corn4[1]
125
+ corn_z4 = cam_z + corn4[2]
126
+
127
+ xs = [cam_x, corn_x1, corn_x2, corn_x3, corn_x4]
128
+ ys = [cam_y, corn_y1, corn_y2, corn_y3, corn_y4]
129
+ zs = [cam_z, corn_z1, corn_z2, corn_z3, corn_z4]
130
+
131
+ return np.array([xs, ys, zs]).T
132
+
133
+ class CameraVisualizer:
134
+ def __init__(self, gradio_plot):
135
+ self._gradio_plot = gradio_plot
136
+ self._fig = None
137
+ self._polar = 0.0
138
+ self._azimuth = 0.0
139
+ self._radius = 0.0
140
+ self._raw_image = None
141
+ self._8bit_image = None
142
+ self._image_colorscale = None
143
+
144
+ def encode_image(self, raw_image, elev=90):
145
+ '''
146
+ :param raw_image (H, W, 3) array of uint8 in [0, 255].
147
+ '''
148
+ # https://stackoverflow.com/questions/60685749/python-plotly-how-to-add-an-image-to-a-3d-scatter-plot
149
+
150
+ dum_img = Image.fromarray(np.ones((3, 3, 3), dtype='uint8')).convert('P', palette='WEB')
151
+ idx_to_color = np.array(dum_img.getpalette()).reshape((-1, 3))
152
+
153
+ self._raw_image = raw_image
154
+ self._8bit_image = Image.fromarray(raw_image).convert('P', palette='WEB', dither=None)
155
+ # self._8bit_image = Image.fromarray(raw_image.clip(0, 254)).convert(
156
+ # 'P', palette='WEB', dither=None)
157
+ self._image_colorscale = [
158
+ [i / 255.0, 'rgb({}, {}, {})'.format(*rgb)] for i, rgb in enumerate(idx_to_color)]
159
+ self._elev = elev
160
+ # return self.update_figure()
161
+
162
+ def update_figure(self):
163
+ fig = go.Figure()
164
+
165
+ if self._raw_image is not None:
166
+ (H, W, C) = self._raw_image.shape
167
+
168
+ x = np.zeros((H, W))
169
+ (y, z) = np.meshgrid(np.linspace(-1.0, 1.0, W), np.linspace(1.0, -1.0, H) * H / W)
170
+
171
+ angle_deg = self._elev-90
172
+ angle = np.radians(90-self._elev)
173
+ rotation_matrix = np.array([
174
+ [np.cos(angle), 0, np.sin(angle)],
175
+ [0, 1, 0],
176
+ [-np.sin(angle), 0, np.cos(angle)]
177
+ ])
178
+ # Assuming x, y, z are the original 3D coordinates of the image
179
+ coordinates = np.stack((x, y, z), axis=-1) # Combine x, y, z into a single array
180
+ # Apply the rotation matrix
181
+ rotated_coordinates = np.matmul(coordinates, rotation_matrix)
182
+ # Extract the new x, y, z coordinates from the rotated coordinates
183
+ x, y, z = rotated_coordinates[..., 0], rotated_coordinates[..., 1], rotated_coordinates[..., 2]
184
+
185
+ fig.add_trace(go.Surface(
186
+ x=x, y=y, z=z,
187
+ surfacecolor=self._8bit_image,
188
+ cmin=0,
189
+ cmax=255,
190
+ colorscale=self._image_colorscale,
191
+ showscale=False,
192
+ lighting_diffuse=1.0,
193
+ lighting_ambient=1.0,
194
+ lighting_fresnel=1.0,
195
+ lighting_roughness=1.0,
196
+ lighting_specular=0.3))
197
+
198
+ scene_bounds = 3.5
199
+ base_radius = 2.5
200
+ zoom_scale = 1.5 # Note that input radius offset is in [-0.5, 0.5].
201
+ fov_deg = 50.0
202
+ edges = [(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (2, 3), (3, 4), (4, 1)]
203
+
204
+ input_cone = calc_cam_cone_pts_3d(
205
+ angle_deg, 0.0, base_radius, fov_deg) # (5, 3).
206
+ output_cone = calc_cam_cone_pts_3d(
207
+ self._polar, self._azimuth, base_radius + self._radius * zoom_scale, fov_deg) # (5, 3).
208
+ output_cones = []
209
+ for i in range(1,4):
210
+ output_cones.append(calc_cam_cone_pts_3d(
211
+ angle_deg, i*90, base_radius + self._radius * zoom_scale, fov_deg))
212
+ delta_deg = 30 if angle_deg <= -15 else -30
213
+ for i in range(4):
214
+ output_cones.append(calc_cam_cone_pts_3d(
215
+ angle_deg+delta_deg, 30+i*90, base_radius + self._radius * zoom_scale, fov_deg))
216
+
217
+ cones = [(input_cone, 'rgb(174, 54, 75)', 'Input view (Predicted view 1)')]
218
+ for i in range(len(output_cones)):
219
+ cones.append((output_cones[i], 'rgb(32, 77, 125)', f'Predicted view {i+2}'))
220
+
221
+ for idx, (cone, clr, legend) in enumerate(cones):
222
+
223
+ for (i, edge) in enumerate(edges):
224
+ (x1, x2) = (cone[edge[0], 0], cone[edge[1], 0])
225
+ (y1, y2) = (cone[edge[0], 1], cone[edge[1], 1])
226
+ (z1, z2) = (cone[edge[0], 2], cone[edge[1], 2])
227
+ fig.add_trace(go.Scatter3d(
228
+ x=[x1, x2], y=[y1, y2], z=[z1, z2], mode='lines',
229
+ line=dict(color=clr, width=3),
230
+ name=legend, showlegend=(i == 1) and (idx <= 1)))
231
+
232
+ # Add label.
233
+ if cone[0, 2] <= base_radius / 2.0:
234
+ fig.add_trace(go.Scatter3d(
235
+ x=[cone[0, 0]], y=[cone[0, 1]], z=[cone[0, 2] - 0.05], showlegend=False,
236
+ mode='text', text=legend, textposition='bottom center'))
237
+ else:
238
+ fig.add_trace(go.Scatter3d(
239
+ x=[cone[0, 0]], y=[cone[0, 1]], z=[cone[0, 2] + 0.05], showlegend=False,
240
+ mode='text', text=legend, textposition='top center'))
241
+
242
+ # look at center of scene
243
+ fig.update_layout(
244
+ # width=640,
245
+ # height=480,
246
+ # height=400,
247
+ height=450,
248
+ autosize=True,
249
+ hovermode=False,
250
+ margin=go.layout.Margin(l=0, r=0, b=0, t=0),
251
+ showlegend=False,
252
+ legend=dict(
253
+ yanchor='bottom',
254
+ y=0.01,
255
+ xanchor='right',
256
+ x=0.99,
257
+ ),
258
+ scene=dict(
259
+ aspectmode='manual',
260
+ aspectratio=dict(x=1, y=1, z=1.0),
261
+ camera=dict(
262
+ eye=dict(x=base_radius - 1.6, y=0.0, z=0.6),
263
+ center=dict(x=0.0, y=0.0, z=0.0),
264
+ up=dict(x=0.0, y=0.0, z=1.0)),
265
+ xaxis_title='',
266
+ yaxis_title='',
267
+ zaxis_title='',
268
+ xaxis=dict(
269
+ range=[-scene_bounds, scene_bounds],
270
+ showticklabels=False,
271
+ showgrid=True,
272
+ zeroline=False,
273
+ showbackground=True,
274
+ showspikes=False,
275
+ showline=False,
276
+ ticks=''),
277
+ yaxis=dict(
278
+ range=[-scene_bounds, scene_bounds],
279
+ showticklabels=False,
280
+ showgrid=True,
281
+ zeroline=False,
282
+ showbackground=True,
283
+ showspikes=False,
284
+ showline=False,
285
+ ticks=''),
286
+ zaxis=dict(
287
+ range=[-scene_bounds, scene_bounds],
288
+ showticklabels=False,
289
+ showgrid=True,
290
+ zeroline=False,
291
+ showbackground=True,
292
+ showspikes=False,
293
+ showline=False,
294
+ ticks='')))
295
+
296
+ self._fig = fig
297
+ return fig
298
+
299
+
300
+ def stage1_run(models, device, cam_vis, tmp_dir,
301
+ input_im, scale, ddim_steps, elev=None, rerun_all=[],
302
+ *btn_retrys):
303
+ is_rerun = True if cam_vis is None else False
304
+ model = models['turncam'].half()
305
+
306
+ stage1_dir = os.path.join(tmp_dir, "stage1_8")
307
+ if not is_rerun:
308
+ os.makedirs(stage1_dir, exist_ok=True)
309
+ output_ims = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=list(range(4)), device=device, ddim_steps=ddim_steps, scale=scale)
310
+ stage2_steps = 50 # ddim_steps
311
+ zero123_infer(model, tmp_dir, indices=[0], device=device, ddim_steps=stage2_steps, scale=scale)
312
+ try:
313
+ elev_output = estimate_elev(tmp_dir)
314
+ except:
315
+ print("Failed to estimate polar angle")
316
+ elev_output = 90
317
+ print("Estimated polar angle:", elev_output)
318
+ gen_poses(tmp_dir, elev_output)
319
+ show_in_im1 = np.asarray(input_im, dtype=np.uint8)
320
+ cam_vis.encode_image(show_in_im1, elev=elev_output)
321
+ new_fig = cam_vis.update_figure()
322
+
323
+ flag_lower_cam = elev_output <= 75
324
+ if flag_lower_cam:
325
+ output_ims_2 = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=list(range(4,8)), device=device, ddim_steps=ddim_steps, scale=scale)
326
+ else:
327
+ output_ims_2 = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=list(range(8,12)), device=device, ddim_steps=ddim_steps, scale=scale)
328
+ torch.cuda.empty_cache()
329
+ return (90-elev_output, new_fig, *output_ims, *output_ims_2)
330
+ else:
331
+ rerun_idx = [i for i in range(len(btn_retrys)) if btn_retrys[i]]
332
+ if 90-int(elev["label"]) > 75:
333
+ rerun_idx_in = [i if i < 4 else i+4 for i in rerun_idx]
334
+ else:
335
+ rerun_idx_in = rerun_idx
336
+ for idx in rerun_idx_in:
337
+ if idx not in rerun_all:
338
+ rerun_all.append(idx)
339
+ print("rerun_idx", rerun_all)
340
+ output_ims = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=rerun_idx_in, device=device, ddim_steps=ddim_steps, scale=scale)
341
+ outputs = [gr.update(visible=True)] * 8
342
+ for idx, view_idx in enumerate(rerun_idx):
343
+ outputs[view_idx] = output_ims[idx]
344
+ reset = [gr.update(value=False)] * 8
345
+ torch.cuda.empty_cache()
346
+ return (rerun_all, *reset, *outputs)
347
+
348
+ def stage2_run(models, device, tmp_dir,
349
+ elev, scale, is_glb=False, rerun_all=[], stage2_steps=50):
350
+ flag_lower_cam = 90-int(elev["label"]) <= 75
351
+ is_rerun = True if rerun_all else False
352
+ model = models['turncam'].half()
353
+ if not is_rerun:
354
+ if flag_lower_cam:
355
+ zero123_infer(model, tmp_dir, indices=list(range(1,8)), device=device, ddim_steps=stage2_steps, scale=scale)
356
+ else:
357
+ zero123_infer(model, tmp_dir, indices=list(range(1,4))+list(range(8,12)), device=device, ddim_steps=stage2_steps, scale=scale)
358
+ else:
359
+ print("rerun_idx", rerun_all)
360
+ zero123_infer(model, tmp_dir, indices=rerun_all, device=device, ddim_steps=stage2_steps, scale=scale)
361
+
362
+ dataset = tmp_dir
363
+ main_dir_path = os.path.dirname(__file__)
364
+ torch.cuda.empty_cache()
365
+ os.chdir(os.path.join(code_dir, 'SparseNeuS_demo_v1/'))
366
+
367
+ bash_script = f'CUDA_VISIBLE_DEVICES={_GPU_INDEX} python exp_runner_generic_blender_val.py --specific_dataset_name {dataset} --mode export_mesh --conf confs/one2345_lod0_val_demo.conf'
368
+ print(bash_script)
369
+ os.system(bash_script)
370
+ os.chdir(main_dir_path)
371
+
372
+ ply_path = os.path.join(tmp_dir, f"meshes_val_bg/lod0/mesh_00215000_gradio_lod0.ply")
373
+ mesh_ext = ".glb" if is_glb else ".obj"
374
+ mesh_path = os.path.join(tmp_dir, f"mesh{mesh_ext}")
375
+ # Read the textured mesh from .ply file
376
+ mesh = trimesh.load_mesh(ply_path)
377
+ rotation_matrix = trimesh.transformations.rotation_matrix(np.pi/2, [1, 0, 0])
378
+ mesh.apply_transform(rotation_matrix)
379
+ rotation_matrix = trimesh.transformations.rotation_matrix(np.pi, [0, 0, 1])
380
+ mesh.apply_transform(rotation_matrix)
381
+ # flip x
382
+ mesh.vertices[:, 0] = -mesh.vertices[:, 0]
383
+ mesh.faces = np.fliplr(mesh.faces)
384
+ # Export the mesh as .obj file with colors
385
+ if not is_glb:
386
+ mesh.export(mesh_path, file_type='obj', include_color=True)
387
+ else:
388
+ mesh.export(mesh_path, file_type='glb')
389
+ torch.cuda.empty_cache()
390
+
391
+ if not is_rerun:
392
+ return (mesh_path)
393
+ else:
394
+ return (mesh_path, gr.update(value=[]), gr.update(visible=False), gr.update(visible=False))
395
+
396
+ def nsfw_check(models, raw_im, device='cuda'):
397
+ safety_checker_input = models['clip_fe'](raw_im, return_tensors='pt').to(device)
398
+ (_, has_nsfw_concept) = models['nsfw'](
399
+ images=np.ones((1, 3)), clip_input=safety_checker_input.pixel_values)
400
+ del safety_checker_input
401
+ if np.any(has_nsfw_concept):
402
+ print('NSFW content detected.')
403
+ return Image.open("unsafe.png")
404
+ else:
405
+ print('Safety check passed.')
406
+ return False
407
+
408
+ def preprocess_run(predictor, models, raw_im, preprocess, *bbox_sliders):
409
+ raw_im.thumbnail([512, 512], Image.Resampling.LANCZOS)
410
+ check_results = nsfw_check(models, raw_im, device=predictor.device)
411
+ if check_results:
412
+ return check_results
413
+ image_sam = sam_out_nosave(predictor, raw_im.convert("RGB"), *bbox_sliders)
414
+ input_256 = image_preprocess_nosave(image_sam, lower_contrast=preprocess, rescale=True)
415
+ torch.cuda.empty_cache()
416
+ return input_256
417
+
418
+ def on_coords_slider(image, x_min, y_min, x_max, y_max, color=(88, 191, 131, 255)):
419
+ """Draw a bounding box annotation for an image."""
420
+ print("Slider adjusted, drawing bbox...")
421
+ image.thumbnail([512, 512], Image.Resampling.LANCZOS)
422
+ image_size = image.size
423
+ if max(image_size) > 224:
424
+ image.thumbnail([224, 224], Image.Resampling.LANCZOS)
425
+ shrink_ratio = max(image.size) / max(image_size)
426
+ x_min = int(x_min * shrink_ratio)
427
+ y_min = int(y_min * shrink_ratio)
428
+ x_max = int(x_max * shrink_ratio)
429
+ y_max = int(y_max * shrink_ratio)
430
+ image = cv2.cvtColor(np.array(image), cv2.COLOR_RGBA2BGRA)
431
+ image = cv2.rectangle(image, (x_min, y_min), (x_max, y_max), color, int(max(max(image.shape) / 400*2, 2)))
432
+ return cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA) # image[:, :, ::-1]
433
+
434
+ def init_bbox(image):
435
+ image.thumbnail([512, 512], Image.Resampling.LANCZOS)
436
+ width, height = image.size
437
+ image_rem = image.convert('RGBA')
438
+ image_nobg = remove(image_rem, alpha_matting=True)
439
+ arr = np.asarray(image_nobg)[:,:,-1]
440
+ x_nonzero = np.nonzero(arr.sum(axis=0))
441
+ y_nonzero = np.nonzero(arr.sum(axis=1))
442
+ x_min = int(x_nonzero[0].min())
443
+ y_min = int(y_nonzero[0].min())
444
+ x_max = int(x_nonzero[0].max())
445
+ y_max = int(y_nonzero[0].max())
446
+ image_mini = image.copy()
447
+ image_mini.thumbnail([224, 224], Image.Resampling.LANCZOS)
448
+ shrink_ratio = max(image_mini.size) / max(width, height)
449
+ x_min_shrink = int(x_min * shrink_ratio)
450
+ y_min_shrink = int(y_min * shrink_ratio)
451
+ x_max_shrink = int(x_max * shrink_ratio)
452
+ y_max_shrink = int(y_max * shrink_ratio)
453
+
454
+ return [on_coords_slider(image_mini, x_min_shrink, y_min_shrink, x_max_shrink, y_max_shrink),
455
+ gr.update(value=x_min, maximum=width),
456
+ gr.update(value=y_min, maximum=height),
457
+ gr.update(value=x_max, maximum=width),
458
+ gr.update(value=y_max, maximum=height)]
459
+
460
+
461
+ def run_demo(
462
+ device_idx=_GPU_INDEX,
463
+ ckpt='zero123-xl.ckpt'):
464
+
465
+ device = f"cuda:{device_idx}" if torch.cuda.is_available() else "cpu"
466
+ models = init_model(device, os.path.join(code_dir, ckpt))
467
+ # model = models['turncam']
468
+ # sampler = DDIMSampler(model)
469
+
470
+ # init sam model
471
+ predictor = sam_init(device_idx)
472
+
473
+ with open('instructions_12345.md', 'r') as f:
474
+ article = f.read()
475
+
476
+ # NOTE: Examples must match inputs
477
+ example_folder = os.path.join(os.path.dirname(__file__), 'demo_examples')
478
+ example_fns = os.listdir(example_folder)
479
+ example_fns.sort()
480
+ examples_full = [os.path.join(example_folder, x) for x in example_fns if x.endswith('.png')]
481
+
482
+ # Compose demo layout & data flow.
483
+ with gr.Blocks(title=_TITLE, css="style.css") as demo:
484
+ with gr.Row():
485
+ with gr.Column(scale=1):
486
+ gr.Markdown('# ' + _TITLE)
487
+ with gr.Column(scale=0):
488
+ gr.DuplicateButton(value='Duplicate Space for private use',
489
+ elem_id='duplicate-button')
490
+ gr.Markdown(_DESCRIPTION)
491
+
492
+ with gr.Row(variant='panel'):
493
+ with gr.Column(scale=1.2):
494
+ image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image', tool=None)
495
+
496
+ gr.Examples(
497
+ examples=examples_full, # NOTE: elements must match inputs list!
498
+ inputs=[image_block],
499
+ outputs=[image_block],
500
+ cache_examples=False,
501
+ label='Examples (click one of the images below to start)',
502
+ examples_per_page=40
503
+ )
504
+ preprocess_chk = gr.Checkbox(
505
+ False, label='Reduce image contrast (mitigate shadows on the backside)')
506
+ with gr.Accordion('Advanced options', open=False):
507
+ scale_slider = gr.Slider(0, 30, value=3, step=1,
508
+ label='Diffusion guidance scale')
509
+ steps_slider = gr.Slider(5, 200, value=75, step=5,
510
+ label='Number of diffusion inference steps')
511
+ glb_chk = gr.Checkbox(
512
+ False, label='Export the mesh in .glb format')
513
+
514
+ run_btn = gr.Button('Run Generation', variant='primary', interactive=False)
515
+ guide_text = gr.Markdown(_USER_GUIDE, visible=True)
516
+
517
+ with gr.Column(scale=.8):
518
+ with gr.Row():
519
+ bbox_block = gr.Image(type='pil', label="Bounding box", height=290, interactive=False)
520
+ sam_block = gr.Image(type='pil', label="SAM output", interactive=False)
521
+ max_width = max_height = 256
522
+ with gr.Row():
523
+ x_min_slider = gr.Slider(label="X min", interactive=True, value=0, minimum=0, maximum=max_width, step=1)
524
+ y_min_slider = gr.Slider(label="Y min", interactive=True, value=0, minimum=0, maximum=max_height, step=1)
525
+ with gr.Row():
526
+ x_max_slider = gr.Slider(label="X max", interactive=True, value=max_width, minimum=0, maximum=max_width, step=1)
527
+ y_max_slider = gr.Slider(label="Y max", interactive=True, value=max_height, minimum=0, maximum=max_height, step=1)
528
+ bbox_sliders = [x_min_slider, y_min_slider, x_max_slider, y_max_slider]
529
+
530
+ mesh_output = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="One-2-3-45's Textured Mesh", elem_id="model-3d-out")
531
+
532
+ with gr.Row(variant='panel'):
533
+ with gr.Column(scale=0.85):
534
+ elev_output = gr.Label(label='Estimated elevation (degree, w.r.t. the horizontal plane)')
535
+ vis_output = gr.Plot(label='Camera poses of the input view (red) and predicted views (blue)', elem_id="plot-out")
536
+
537
+ with gr.Column(scale=1.15):
538
+ gr.Markdown('Predicted multi-view images')
539
+ with gr.Row():
540
+ view_1 = gr.Image(interactive=False, height=200, show_label=False)
541
+ view_2 = gr.Image(interactive=False, height=200, show_label=False)
542
+ view_3 = gr.Image(interactive=False, height=200, show_label=False)
543
+ view_4 = gr.Image(interactive=False, height=200, show_label=False)
544
+ with gr.Row():
545
+ btn_retry_1 = gr.Checkbox(label='Retry view 1')
546
+ btn_retry_2 = gr.Checkbox(label='Retry view 2')
547
+ btn_retry_3 = gr.Checkbox(label='Retry view 3')
548
+ btn_retry_4 = gr.Checkbox(label='Retry view 4')
549
+ with gr.Row():
550
+ view_5 = gr.Image(interactive=False, height=200, show_label=False)
551
+ view_6 = gr.Image(interactive=False, height=200, show_label=False)
552
+ view_7 = gr.Image(interactive=False, height=200, show_label=False)
553
+ view_8 = gr.Image(interactive=False, height=200, show_label=False)
554
+ with gr.Row():
555
+ btn_retry_5 = gr.Checkbox(label='Retry view 5')
556
+ btn_retry_6 = gr.Checkbox(label='Retry view 6')
557
+ btn_retry_7 = gr.Checkbox(label='Retry view 7')
558
+ btn_retry_8 = gr.Checkbox(label='Retry view 8')
559
+ with gr.Row():
560
+ regen_view_btn = gr.Button('1. Regenerate selected view(s)', variant='secondary', visible=False)
561
+ regen_mesh_btn = gr.Button('2. Regenerate nearby views and mesh', variant='secondary', visible=False)
562
+
563
+ update_guide = lambda GUIDE_TEXT: gr.update(value=GUIDE_TEXT)
564
+
565
+ views = [view_1, view_2, view_3, view_4, view_5, view_6, view_7, view_8]
566
+ btn_retrys = [btn_retry_1, btn_retry_2, btn_retry_3, btn_retry_4, btn_retry_5, btn_retry_6, btn_retry_7, btn_retry_8]
567
+
568
+ rerun_idx = gr.State([])
569
+ tmp_dir = gr.State('./demo_tmp/tmp_dir')
570
+
571
+ def refresh(tmp_dir):
572
+ if os.path.exists(tmp_dir):
573
+ shutil.rmtree(tmp_dir)
574
+ tmp_dir = tempfile.TemporaryDirectory(dir=os.path.join(os.path.dirname(__file__), 'demo_tmp'))
575
+ print("create tmp_dir", tmp_dir.name)
576
+ clear = [gr.update(value=[])] + [None] * 5 + [gr.update(visible=False)] * 2 + [None] * 8 + [gr.update(value=False)] * 8
577
+ return (tmp_dir.name, *clear)
578
+
579
+ placeholder = gr.Image(visible=False)
580
+ tmp_func = lambda x: False if not x else gr.update(visible=False)
581
+ disable_func = lambda x: gr.update(interactive=False)
582
+ enable_func = lambda x: gr.update(interactive=True)
583
+ image_block.change(disable_func, inputs=run_btn, outputs=run_btn, queue=False
584
+ ).success(fn=refresh,
585
+ inputs=[tmp_dir],
586
+ outputs=[tmp_dir, rerun_idx, bbox_block, sam_block, elev_output, vis_output, mesh_output, regen_view_btn, regen_mesh_btn, *views, *btn_retrys],
587
+ queue=False
588
+ ).success(fn=tmp_func, inputs=[image_block], outputs=[placeholder], queue=False
589
+ ).success(fn=partial(update_guide, _BBOX_1), outputs=[guide_text], queue=False
590
+ ).success(fn=init_bbox,
591
+ inputs=[image_block],
592
+ outputs=[bbox_block, *bbox_sliders], queue=False
593
+ ).success(fn=partial(update_guide, _BBOX_3), outputs=[guide_text], queue=False
594
+ ).success(enable_func, inputs=run_btn, outputs=run_btn, queue=False)
595
+
596
+
597
+ for bbox_slider in bbox_sliders:
598
+ bbox_slider.release(fn=on_coords_slider,
599
+ inputs=[image_block, *bbox_sliders],
600
+ outputs=[bbox_block],
601
+ queue=False
602
+ ).success(fn=partial(update_guide, _BBOX_2), outputs=[guide_text], queue=False)
603
+
604
+ cam_vis = CameraVisualizer(vis_output)
605
+
606
+ gr.Markdown(article)
607
+
608
+ # Define the function to be called when any of the btn_retry buttons are clicked
609
+ def on_retry_button_click(*btn_retrys):
610
+ any_checked = any([btn_retry for btn_retry in btn_retrys])
611
+ print('any_checked:', any_checked, [btn_retry for btn_retry in btn_retrys])
612
+ if any_checked:
613
+ return (gr.update(visible=True), gr.update(visible=True))
614
+ else:
615
+ return (gr.update(), gr.update())
616
+ # make regen_btn visible when any of the btn_retry is checked
617
+ for btn_retry in btn_retrys:
618
+ # Add the event handlers to the btn_retry buttons
619
+ btn_retry.change(fn=on_retry_button_click, inputs=[*btn_retrys], outputs=[regen_view_btn, regen_mesh_btn], queue=False)
620
+
621
+
622
+ run_btn.click(fn=partial(update_guide, _SAM), outputs=[guide_text], queue=False
623
+ ).success(fn=partial(preprocess_run, predictor, models),
624
+ inputs=[image_block, preprocess_chk, *bbox_sliders],
625
+ outputs=[sam_block]
626
+ ).success(fn=partial(update_guide, _GEN_1), outputs=[guide_text], queue=False
627
+ ).success(fn=partial(stage1_run, models, device, cam_vis),
628
+ inputs=[tmp_dir, sam_block, scale_slider, steps_slider],
629
+ outputs=[elev_output, vis_output, *views]
630
+ ).success(fn=partial(update_guide, _GEN_2), outputs=[guide_text], queue=False
631
+ ).success(fn=partial(stage2_run, models, device),
632
+ inputs=[tmp_dir, elev_output, scale_slider, glb_chk],
633
+ outputs=[mesh_output]
634
+ ).success(fn=partial(update_guide, _DONE), outputs=[guide_text], queue=False)
635
+
636
+
637
+ regen_view_btn.click(fn=partial(stage1_run, models, device, None),
638
+ inputs=[tmp_dir, sam_block, scale_slider, steps_slider, elev_output, rerun_idx, *btn_retrys],
639
+ outputs=[rerun_idx, *btn_retrys, *views]
640
+ ).success(fn=partial(update_guide, _REGEN_1), outputs=[guide_text], queue=False)
641
+ regen_mesh_btn.click(fn=partial(stage2_run, models, device),
642
+ inputs=[tmp_dir, elev_output, scale_slider, glb_chk, rerun_idx],
643
+ outputs=[mesh_output, rerun_idx, regen_view_btn, regen_mesh_btn]
644
+ ).success(fn=partial(update_guide, _REGEN_2), outputs=[guide_text], queue=False)
645
+
646
+
647
+ demo.queue().launch(share=False, max_threads=80) # auth=("admin", os.environ['PASSWD'])
648
+
649
+
650
+ if __name__ == '__main__':
651
+
652
+ fire.Fire(run_demo)
demo_examples/00_zero123_lysol.png ADDED

Git LFS Details

  • SHA256: e6a8dc67d256dbd16f399407bf12f554bb86a1ba5428c0666556f012bcc00e27
  • Pointer size: 130 Bytes
  • Size of remote file: 27 kB
demo_examples/01_wild_hydrant.png ADDED

Git LFS Details

  • SHA256: 3c523613f3a178acd2cbdc82635674de91060523094ce304b1707202f850e2bc
  • Pointer size: 131 Bytes
  • Size of remote file: 530 kB
demo_examples/02_zero123_spyro.png ADDED

Git LFS Details

  • SHA256: 12cf2a035a4d2d5d11952c30cb1ca9d80ca0ea5b7467cd3a19209df50e68428f
  • Pointer size: 130 Bytes
  • Size of remote file: 31.1 kB
demo_examples/03_wild2_pineapple_bottle.png ADDED

Git LFS Details

  • SHA256: e37757de125a25d76d72bb3b4ad535931fc1691a740a330cf1e02c2c772cf639
  • Pointer size: 131 Bytes
  • Size of remote file: 402 kB
demo_examples/04_unsplash_broccoli.png ADDED

Git LFS Details

  • SHA256: 0342affecfd2626bae0238cf07c7aa173ec8a99e9eba02381334dc44d62b558f
  • Pointer size: 131 Bytes
  • Size of remote file: 275 kB
demo_examples/05_objaverse_backpack.png ADDED

Git LFS Details

  • SHA256: a7ee505609229e4e5563ae5ff679a3dbcef33e20a6c3adcc69f82038acc12e5a
  • Pointer size: 130 Bytes
  • Size of remote file: 39.6 kB
demo_examples/06_unsplash_chocolatecake.png ADDED

Git LFS Details

  • SHA256: f2d9d9c515d2ca28720e361762cf45630ef82efbcf0de4face13bb77784392e2
  • Pointer size: 131 Bytes
  • Size of remote file: 207 kB
demo_examples/07_unsplash_stool2.png ADDED

Git LFS Details

  • SHA256: 2d00968b346d5e63aa68645c5e13edc13b3665fd7e89ad7ae6f374414320f28f
  • Pointer size: 131 Bytes
  • Size of remote file: 198 kB
demo_examples/08_dalle_icecream.png ADDED

Git LFS Details

  • SHA256: 8c814423ff2dbac089485b35d9b350a855ab18f8d422dee25e3f5e5f6bd7eb1e
  • Pointer size: 131 Bytes
  • Size of remote file: 221 kB
demo_examples/09_unsplash_bigmac.png ADDED

Git LFS Details

  • SHA256: c85bedd18f77f3574fbaa8ff296607f4fe17f36d0fd8a8c5ca262fdee9486f84
  • Pointer size: 131 Bytes
  • Size of remote file: 395 kB
demo_examples/10_dalle3_blueberryicecream2.png ADDED

Git LFS Details

  • SHA256: b6c5aa7b48d2550e08865ef0e1b097955ad2c292b4f4c8a92e6638ae88d3f4a0
  • Pointer size: 131 Bytes
  • Size of remote file: 221 kB
demo_examples/11_GSO_Crosley_Alarm_Clock_Vintage_Metal.png ADDED

Git LFS Details

  • SHA256: cef5279deddead4cb31258a73613accccc21d1e6b63bbdacb0b934d66ff31a08
  • Pointer size: 130 Bytes
  • Size of remote file: 32 kB
demo_examples/12_realfusion_cactus_1.png ADDED

Git LFS Details

  • SHA256: bc8b559acdaabd5fec369e9543a3fb4516d25b74e2bab35e075335e7e557cef3
  • Pointer size: 131 Bytes
  • Size of remote file: 122 kB
demo_examples/13_realfusion_cherry_1.png ADDED

Git LFS Details

  • SHA256: 99f8defc7d88f0a953578004443ec117b90920e68e86ad0488b8529ad5f61c2b
  • Pointer size: 131 Bytes
  • Size of remote file: 273 kB
demo_examples/14_dalle_cowbear.png ADDED

Git LFS Details

  • SHA256: 1c6a510ebdea03448dadf4dff71a2cc3ce54e0a0328ee87ce0c1bbf6fbbca91d
  • Pointer size: 131 Bytes
  • Size of remote file: 284 kB
demo_examples/15_dalle3_gramophone1.png ADDED

Git LFS Details

  • SHA256: 54a802f0995b6ff64071b9b986650037be5fcd0d5b68626a4b468a5709cc0d29
  • Pointer size: 131 Bytes
  • Size of remote file: 277 kB
demo_examples/16_dalle3_mushroom2.png ADDED

Git LFS Details

  • SHA256: dd4f0cb7cd9b65489e8ccb2d23d76ec1caa29ebf7c1e0c1fc25fdd803e8ce9a4
  • Pointer size: 131 Bytes
  • Size of remote file: 352 kB
demo_examples/17_dalle3_rockingchair1.png ADDED

Git LFS Details

  • SHA256: 6ad3eea0f2a98af1d5382787dda80c24b2061456ca8bde094cd9fc9308b178c3
  • Pointer size: 131 Bytes
  • Size of remote file: 230 kB
demo_examples/18_unsplash_mario.png ADDED

Git LFS Details

  • SHA256: 55fd9facf435eda15d5636f001c78bbe9cee14b549672bc2eb86ae4dbe183e97
  • Pointer size: 131 Bytes
  • Size of remote file: 294 kB
demo_examples/19_dalle3_stump1.png ADDED

Git LFS Details

  • SHA256: 1e64cbbc88f310487f5b2f3ed2eb7d1cd859adf4653e10173033ddee6562151e
  • Pointer size: 131 Bytes
  • Size of remote file: 297 kB
demo_examples/20_objaverse_stool.png ADDED

Git LFS Details

  • SHA256: fca2047879efaffd5ce6e19271d633cb1a4e67080ccfdcf7d251da4d2753172a
  • Pointer size: 130 Bytes
  • Size of remote file: 25.5 kB
demo_examples/21_objaverse_barrel.png ADDED

Git LFS Details

  • SHA256: d33a8814313eb11bdca60aec3cad0f7d49c76e397b265d9797a4efe2bce5dbce
  • Pointer size: 130 Bytes
  • Size of remote file: 49.6 kB
demo_examples/22_unsplash_boxtoy.png ADDED

Git LFS Details

  • SHA256: 0d40a932892e3bd7076eb44cfe327e1e87ea00469cf1a120da746e6f3caef882
  • Pointer size: 131 Bytes
  • Size of remote file: 275 kB
demo_examples/23_objaverse_tank.png ADDED

Git LFS Details

  • SHA256: 2f970c70041f951d1a0683a0b2ff57354850498c4add47758bc2d1fa59b6590c
  • Pointer size: 130 Bytes
  • Size of remote file: 51.3 kB
demo_examples/24_wild2_yellow_duck.png ADDED

Git LFS Details

  • SHA256: 5791f44bdf0487916eb3129539ae0bcaec1d3ebc825363b27aebfeeb2981643d
  • Pointer size: 131 Bytes
  • Size of remote file: 560 kB
demo_examples/25_unsplash_teapot.png ADDED

Git LFS Details

  • SHA256: 70e67ae75c14fc60beddceafbce0ad81a5142b17378531b880ae9858fae51483
  • Pointer size: 131 Bytes
  • Size of remote file: 255 kB
demo_examples/26_unsplash_strawberrycake.png ADDED

Git LFS Details

  • SHA256: 3db1f8ebc29f3ea89fb16a9202d9659ddac447a85ef015e7a5b731178a076ddd
  • Pointer size: 131 Bytes
  • Size of remote file: 198 kB
demo_examples/27_objaverse_robocat.png ADDED

Git LFS Details

  • SHA256: 83499ab6e65e6cfa9e158d71a141c296d8585a0ba8923251b86de68af2b4f1a8
  • Pointer size: 130 Bytes
  • Size of remote file: 32 kB
demo_examples/28_wild_goose_chef.png ADDED

Git LFS Details

  • SHA256: 7a3fc54c19e7ddf9d3c4796f597e96a373904cb6341c02a3676df92352837496
  • Pointer size: 131 Bytes
  • Size of remote file: 274 kB
demo_examples/29_wild_peroxide.png ADDED

Git LFS Details

  • SHA256: 6d30acf4216ca9cc9531d630881047c6864c5359f53685101547311d99b6a38f
  • Pointer size: 131 Bytes
  • Size of remote file: 238 kB
demo_tmp/.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ tmp*
demo_tmp/.gitkeep ADDED
File without changes
instructions_12345.md ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Tuning Tips:
2
+
3
+ 1. The multi-view prediction module (Zero123) operates probabilistically. If some of the predicted views are not satisfactory, you may select and regenerate them.
4
+
5
+ 2. In “advanced options”, you can tune two parameters as in other common diffusion models:
6
+ - Diffusion Guidance Scale determines how much you want the model to respect the input information (input image + viewpoints). Increasing the scale typically results in better adherence, less diversity, and also higher image distortion.
7
+
8
+ - Number of diffusion inference steps controls the number of diffusion steps applied to generate each image. Generally, a higher value yields better results but with diminishing returns.
9
+
10
+ Enjoy creating your 3D asset!
packages.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ libsparsehash-dev
requirements.txt ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ --extra-index-url https://download.pytorch.org/whl/cu118
2
+ numpy
3
+ torch>=2.0.0
4
+ torchvision
5
+ albumentations>=0.4.3
6
+ opencv-python>=4.5.5.64
7
+ pudb>=2019.2
8
+ imageio>=2.9.0
9
+ imageio-ffmpeg>=0.4.2
10
+ pytorch-lightning>=1.4.2
11
+ omegaconf>=2.1.1
12
+ test-tube>=0.7.5
13
+ streamlit>=0.73.1
14
+ einops>=0.3.0
15
+ torch-fidelity>=0.3.0
16
+ transformers>=4.22.2
17
+ kornia>=0.6
18
+ webdataset>=0.2.5
19
+ torchmetrics>=0.6.0
20
+ fire>=0.4.0
21
+ gradio>=3.40.1
22
+ diffusers>=0.12.1
23
+ datasets[vision]>=2.4.0
24
+ carvekit-colab>=4.1.0
25
+ rich>=13.3.2
26
+ plotly>=5.13.1
27
+ -e git+https://github.com/CompVis/taming-transformers.git#egg=taming-transformers
28
+ # elev est
29
+ dl_ext
30
+ easydict
31
+ glumpy
32
+ gym
33
+ h5py
34
+ loguru
35
+ matplotlib
36
+ # mplib
37
+ multipledispatch
38
+ packaging
39
+ Pillow
40
+ pycocotools
41
+ motion-planning
42
+ pyrender
43
+ PyYAML
44
+ scikit_image
45
+ scikit_learn
46
+ scipy
47
+ screeninfo
48
+ setuptools
49
+ tensorboardX
50
+ tqdm
51
+ transforms3d
52
+ trimesh
53
+ yacs
54
+ gdown
55
+ git+https://github.com/NVlabs/nvdiffrast.git
56
+ git+https://github.com/openai/CLIP.git
57
+ # segment anything
58
+ onnxruntime
59
+ onnx
60
+ git+https://github.com/facebookresearch/segment-anything.git
61
+ # rembg
62
+ rembg
63
+ # sparseneus
64
+ # -e git+https://github.com/mit-han-lab/[email protected]#egg=torchsparse
65
+ pyhocon
66
+ icecream
67
+ PyMCubes
68
+ ninja
style.css ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #model-3d-out {
2
+ height: 400px;
3
+ }
4
+
5
+ #plot-out {
6
+ height: 450px;
7
+ }
8
+
9
+ #duplicate-button {
10
+ margin-left: auto;
11
+ color: #fff;
12
+ background: #1565c0;
13
+ }
unsafe.png ADDED

Git LFS Details

  • SHA256: e34e0242a55665673d981115beeff72e6583d4c23143eb5bccbc0b73e162760d
  • Pointer size: 130 Bytes
  • Size of remote file: 29.6 kB