Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from AI_Risk_app import retrieval_augmented_qa_chain # Importing the RAG chain
|
5 |
+
|
6 |
+
|
7 |
+
# Load the .env file
|
8 |
+
import streamlit as st
|
9 |
+
import openai
|
10 |
+
|
11 |
+
# Get OpenAI API key from Streamlit secrets
|
12 |
+
openai.api_key = st.secrets["OPENAI_API_KEY"]
|
13 |
+
|
14 |
+
# Load environment variables
|
15 |
+
load_dotenv()
|
16 |
+
|
17 |
+
# Set up the Streamlit interface
|
18 |
+
st.title("AI Risk Advisory QA")
|
19 |
+
|
20 |
+
# Get the user query
|
21 |
+
user_query = st.text_input("Ask your question:")
|
22 |
+
|
23 |
+
# Button to trigger the RAG process
|
24 |
+
if st.button("Get Answer"):
|
25 |
+
if user_query:
|
26 |
+
# Pass user query through RAG chain
|
27 |
+
result = retrieval_augmented_qa_chain.invoke({"question": user_query})
|
28 |
+
|
29 |
+
# Extract response content from RAG result
|
30 |
+
response_content = result["response"].content
|
31 |
+
|
32 |
+
# Display the response content in the Streamlit app
|
33 |
+
st.write("**Answer:**")
|
34 |
+
st.write(response_content)
|
35 |
+
else:
|
36 |
+
st.write("Please enter a question.")
|