AbrahamicSolver / caller_penalty.py
Gatsby767's picture
Upload 11 files
0e6368e verified
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import regex as re
from typing import Dict, List
import json
from mathruler.grader import extract_boxed_content, grade_answer
import os
import time
import random
import requests
from concurrent.futures import ThreadPoolExecutor, as_completed
from collections import Counter
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
from sklearn.cluster import AgglomerativeClustering
import numpy as np
STORAGE_PATH = os.getenv("STORAGE_PATH","/apdcephfs_sh2/share_300000800/user/chengchuang")
def _bleu_distance_matrix(sentences):
n = len(sentences)
dist = np.zeros((n, n))
smoother = SmoothingFunction().method1
for i in range(n):
for j in range(i, n):
if i == j:
score = 1.0
else:
ref = [sentences[j].split()]
hyp = sentences[i].split()
score = sentence_bleu(ref, hyp, smoothing_function=smoother)
dist[i, j] = dist[j, i] = 1 - score
return dist
def cluster_share_per_problem(
problems,
distance_threshold: float = 0.5,
linkage: str = "average"):
if not problems:
return []
print('start clustering')
start_time = time.time()
dist_mat = _bleu_distance_matrix(problems)
clustering = AgglomerativeClustering(
n_clusters=None,
distance_threshold=distance_threshold,
metric="precomputed",
linkage=linkage
)
labels = clustering.fit_predict(dist_mat)
print(f'end clustering, time: {time.time() - start_time}')
total = len(problems)
cluster_size = Counter(labels)
cluster_ratio = {lab: sz / total for lab, sz in cluster_size.items()}
proportions = [cluster_ratio[lab] for lab in labels]
return proportions
def generate_temp_filename(prefix="temp", suffix=".json"):
timestamp = int(time.time() * 1000)
rand_part = random.randint(0, 99999)
return f"{STORAGE_PATH}/temp_results/{prefix}_{timestamp}_{rand_part}{suffix}"
def split_list(lst, n=4):
k, m = divmod(len(lst), n)
return [lst[i*k + min(i, m):(i+1)*k + min(i+1, m)] for i in range(n)]
os.environ["NO_PROXY"] = "0.0.0.0,127.0.0.1"
def fetch(index,i):
response = requests.get(f"http://0.0.0.0:{5000+index}/hello?name={i}")
print(response)
return True
def generate_results(data):
datas = split_list(data,4)
random_names = [generate_temp_filename(prefix=f"temp_{i}", suffix=".json") for i in range(4)]
for i in range(4):
with open(random_names[i],'w') as f:
json.dump(datas[i],f,indent=4)
final_results = []
with ThreadPoolExecutor(max_workers=4) as executor:
futures = [executor.submit(fetch, i,random_names[i]) for i in range(4)]
for future in as_completed(futures):
print(future.result())
for i in range(4):
with open(random_names[i].replace('.json','_results.json'),'r') as f:
final_results.extend(json.load(f))
# os.remove(random_names[i].replace('.json','_results.json'))
for i in range(4):
os.remove(random_names[i].replace('.json','_results.json'))
return final_results
def format_reward(predict: str) -> float:
pattern = re.compile(r"<think>.*</think>.*\\boxed\{.*\}.*", re.DOTALL)
format_match = re.fullmatch(pattern, predict)
return 1.0 if format_match else 0.0
def accuracy_reward(predict: str, ground_truth: str) -> float:
answer = extract_boxed_content(predict)
return 1.0 if grade_answer(answer, ground_truth) else 0.0
def compute_score(predicts: List[str], ground_truths: List[str], format_weight: float = 0.1, file_path: str = "") -> List[Dict[str, float]]:
results = []
with open('test.json','w') as f:
json.dump(predicts,f,indent=4)
for i in range(len(predicts)):
questions = re.findall(r"<question>(.*?)</question>", predicts[i], re.DOTALL)
answers = extract_boxed_content(predicts[i])
if questions and answers:
try:
question = questions[-1].strip()
answer = answers[-1].strip()
results.append({"question": question, "answer": answer})
except:
results.append({"question": "", "answer": ""})
else:
results.append({"question": "", "answer": ""})
final_results = generate_results(results)
penalty = cluster_share_per_problem([result['question'] for result in final_results], distance_threshold=0.5)
# print(penalty)
assert len(penalty) == len(final_results)
scores = []
for i in range(len(final_results)):
final_score = (min(final_results[i]["score"],1-final_results[i]["score"]) if final_results[i]['question'] else -1)-penalty[i]
scores.append({"overall": final_score,"format": 1 if final_results[i]['question'] else 0,"accuracy": penalty[i]})
return scores