Spaces:
Running
Running
import datasets | |
import json | |
import re | |
import random | |
import argparse | |
from transformers import AutoTokenizer | |
from vllm import LLM, SamplingParams | |
def extract_last_boxed(text): | |
pattern = r'\\boxed\{((?:[^{}]|\{(?:[^{}]|\{[^{}]*\})*\})*)\}' | |
matches = list(re.finditer(pattern, text)) | |
if matches: | |
return matches[-1].group(1) | |
return None | |
def extract_last_final_answer(text): | |
pattern1 = r'Final Answer:((?:[^<]|<[^<])*?)\n' | |
pattern2 = r'The answer is:((?:[^<]|<[^<])*?)\n' | |
matches1 = list(re.finditer(pattern1, text)) | |
matches2 = list(re.finditer(pattern2, text)) | |
if matches1: | |
return matches1[-1].group(1) | |
elif matches2: | |
return matches2[-1].group(1) | |
return None | |
def extract_solution(solution_str): | |
if '<|im_start|>user' in solution_str: | |
model_output = re.sub(r'^.*?<\|im_start\|>assistant', '<|im_start|>assistant', solution_str, flags=re.DOTALL, count=1) | |
elif 'Assistant:' in solution_str: | |
model_output = solution_str.split('Assistant:')[-1].strip() | |
else: | |
model_output = solution_str | |
stop_words = ["</s>", "<|im_end|>", "<|endoftext|>"] | |
for stop_word in stop_words: | |
if stop_word in model_output: | |
model_output = model_output.split(stop_word)[0].strip() | |
extract_boxed_answer = extract_last_boxed(model_output) | |
if extract_boxed_answer: | |
return extract_boxed_answer | |
else: | |
return extract_last_final_answer(model_output) | |
def strip_latex(response: str) -> str: | |
if response.startswith("$") and response.endswith("$"): | |
response = response[1:-1] | |
if "boxed{" in response and response.endswith("}"): | |
response = response[0:-1].split("boxed{")[1] | |
if "text{" in response and response.endswith("}"): | |
response = response[0:-1].split("text{")[1] | |
if "texttt{" in response and response.endswith("}"): | |
response = response[0:-1].split("texttt{")[1] | |
return response | |
def extract_answer(sample: str) -> str: | |
if sample is None: | |
sample = "" | |
"""Extracts the final answer from the sample.""" | |
answer_prefixes = [ | |
"The answer is:", | |
"The final answer is ", | |
"The final answer is: ", | |
"The answer is " | |
] | |
answer = sample | |
for answer_prefix in answer_prefixes: | |
if answer_prefix in answer: | |
answer = answer.split(answer_prefix)[-1].strip() | |
if answer.endswith("."): | |
answer = answer[:-1] | |
return strip_latex(answer) | |
def fuzzy_match(prediction: str, reference: str) -> bool: | |
"""Fuzzy match function for BigBench Extra Hard.""" | |
if prediction == reference: | |
return True | |
# (a) vs a | |
if len(prediction) == 3 and prediction[0] == "(" and prediction[-1] == ")": | |
return prediction[1] == reference | |
if len(reference) == 3 and reference[0] == "(" and reference[-1] == ")": | |
return reference[1] == prediction | |
# Numbers | |
try: | |
if float(prediction) == float(reference): | |
return True | |
except ValueError: | |
pass | |
# quote issues | |
if prediction.replace("'", "") == reference.replace("'", ""): | |
return True | |
# Bracket issues | |
if f"[{reference}]" == prediction or f"[{prediction}]" == reference: | |
return True | |
# Question mark issues | |
if prediction.endswith("?") and prediction[:-1] == reference: | |
return True | |
return False | |
def preprocess_sample(sample: str) -> str: | |
if sample is None: | |
sample = "" | |
prediction = extract_answer(sample.strip()).lower() | |
prediction = prediction.replace(", ", ",").replace("**", "") | |
prediction = prediction.split("\n")[0] | |
prediction = prediction[0:-1] if prediction.endswith(".") else prediction | |
return prediction | |
def preprocess_reference(reference: str) -> str: | |
reference = reference.strip().lower() | |
reference = reference.replace(", ", ",") | |
return reference | |
def evaluate_correctness(sample: str, reference: str) -> bool: | |
prediction = preprocess_sample(sample) | |
reference = preprocess_reference(reference) | |
return fuzzy_match(prediction, reference) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model_path", type=str, required=True, help="Path to the model directory") | |
parser.add_argument("--output_file", type=str, default="outputs.json", help="File to save results") | |
args = parser.parse_args() | |
tokenizer = AutoTokenizer.from_pretrained(args.model_path) | |
llm = LLM(model=args.model_path, tensor_parallel_size=4,gpu_memory_utilization=0.85) | |
dataset = datasets.load_dataset('MrLight/bbeh-eval') | |
categories = sorted(list(set(dataset['train']['task']))) | |
print("Categories:", categories) | |
per_category_accuracy = {c: [0, 0] for c in categories} | |
success, fail = 0, 0 | |
answers = [] | |
print('----------------- Start Answering -------------------') | |
for category in categories: | |
category_entries = [entry for entry in dataset['train'] if entry['task'] == category] | |
prompts = [] | |
for entry in category_entries: | |
query = entry['question'] + '\n' | |
messages = [{ | |
"role": "user", | |
"content": query + '\nPlease reason step by step, and put your final answer option within \\boxed{}.' | |
}] | |
if tokenizer.chat_template: | |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, enable_thinking=False) | |
else: | |
prompt = "user: " + query + '\nPlease reason step by step, and put your final answer option within \\boxed{}. Only put the letter in the box, e.g. \\boxed{A}. There is only one correct answer.' | |
prompts.append(prompt) | |
sampling_params = SamplingParams(temperature=0, top_p=1, max_tokens=8192) | |
outputs = llm.generate(prompts, sampling_params) | |
for entry, output in zip(category_entries, outputs): | |
answer = output.outputs[0].text | |
entry['solution'] = answer | |
answers.append(entry) | |
answer = extract_solution(answer) | |
if evaluate_correctness(answer, entry['answer']): | |
success += 1 | |
per_category_accuracy[category][0] += 1 | |
else: | |
fail += 1 | |
per_category_accuracy[category][1] += 1 | |
print(f"{category}: {per_category_accuracy[category][0] / (per_category_accuracy[category][0] + per_category_accuracy[category][1]):.4f}") | |
with open(args.output_file, 'w') as f: | |
json.dump(answers, f, indent=2) | |
with open('final_results.jsonl', 'a') as f: | |
json.dump({"dataset": "bbeh", "model": args.model_path, "accuracy": round(success / (success + fail)*100, 2)}, f, indent=2) | |
print("Overall Accuracy:", success / (success + fail)) | |