AbrahamicSolver / flash_attention_utils.py
Gatsby767's picture
Upload 10 files
c040236 verified
# Copyright 2024 The Fairseq Authors and the HuggingFace Inc. team
# Copyright 2024 Bytedance Ltd. and/or its affiliates
# Based on https://github.com/huggingface/transformers/blob/v4.49.0/src/transformers/modeling_flash_attention_utils.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import os
from typing import Optional, Tuple
import torch
import torch.distributed as dist
from transformers.modeling_flash_attention_utils import _flash_attention_forward, fa_peft_integration_check
from transformers.utils import is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10
from ...utils.ulysses import (
gather_heads_scatter_seq,
gather_seq_scatter_heads,
get_ulysses_sequence_parallel_group,
get_ulysses_sequence_parallel_world_size,
)
if is_flash_attn_2_available():
from flash_attn import flash_attn_func, flash_attn_varlen_func
_flash_supports_window_size = "window_size" in inspect.signature(flash_attn_func).parameters
_flash_supports_deterministic = "deterministic" in inspect.signature(flash_attn_func).parameters
_flash_deterministic_enabled = os.environ.get("FLASH_ATTENTION_DETERMINISTIC", "0") == "1"
_flash_use_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def prepare_fa2_from_position_ids(
query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, position_ids: torch.Tensor
):
query = query.view(-1, query.size(-2), query.size(-1))
key = key.contiguous().view(-1, key.size(-2), key.size(-1))
value = value.contiguous().view(-1, value.size(-2), value.size(-1))
position_ids = position_ids.flatten()
indices_q = torch.arange(position_ids.size(0), device=position_ids.device, dtype=torch.int32)
cu_seqlens = torch.cat(
(
indices_q[position_ids == 0],
torch.tensor(position_ids.size(), device=position_ids.device, dtype=torch.int32),
)
)
max_length = cu_seqlens.diff().max() # use cu_seqlens to infer max_length for qwen2vl mrope
return (query, key, value, indices_q, (cu_seqlens, cu_seqlens), (max_length, max_length))
def _custom_flash_attention_forward(
query_states: torch.Tensor,
key_states: torch.Tensor,
value_states: torch.Tensor,
attention_mask: Optional[torch.Tensor],
query_length: int,
is_causal: bool = True,
position_ids: Optional[torch.Tensor] = None,
sliding_window: Optional[int] = None,
use_top_left_mask: bool = False,
deterministic: Optional[bool] = None,
**kwargs,
):
"""
Patches flash attention forward to handle 3D position ids in mrope. (3, batch_size, seq_length)
"""
if not use_top_left_mask:
causal = is_causal
else:
causal = is_causal and query_length != 1
# Assuming 4D tensors, key_states.shape[1] is the key/value sequence length (source length).
use_sliding_windows = (
_flash_supports_window_size and sliding_window is not None and key_states.shape[1] > sliding_window
)
flash_kwargs = {"window_size": (sliding_window, sliding_window)} if use_sliding_windows else {}
if _flash_supports_deterministic:
flash_kwargs["deterministic"] = deterministic if deterministic is not None else _flash_deterministic_enabled
if kwargs.get("softcap") is not None:
flash_kwargs["softcap"] = kwargs.pop("softcap")
query_states, key_states, value_states = fa_peft_integration_check(
query_states, key_states, value_states, target_dtype=torch.bfloat16
)
sp_size = get_ulysses_sequence_parallel_world_size()
if sp_size > 1:
# (batch_size, seq_length, num_head, head_size)
query_states = gather_seq_scatter_heads(query_states, seq_dim=1, head_dim=2)
key_states = gather_seq_scatter_heads(key_states, seq_dim=1, head_dim=2)
value_states = gather_seq_scatter_heads(value_states, seq_dim=1, head_dim=2)
position_ids_lst = [torch.empty_like(position_ids) for _ in range(sp_size)]
position_ids = dist.all_gather(position_ids_lst, position_ids, group=get_ulysses_sequence_parallel_group())
position_ids = torch.cat(position_ids_lst, dim=-1) # (..., batch_size, seq_length)
if position_ids is not None and position_ids.dim() == 3: # qwen2vl mrope
position_ids = position_ids[0]
if position_ids is not None and query_length != 1 and not (torch.diff(position_ids, dim=-1) >= 0).all():
batch_size = query_states.size(0)
query_states, key_states, value_states, _, cu_seq_lens, max_seq_lens = prepare_fa2_from_position_ids(
query_states, key_states, value_states, position_ids
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
attn_output = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=kwargs.pop("dropout", 0.0),
softmax_scale=kwargs.pop("softmax_scale", None),
causal=causal,
**flash_kwargs,
)
attn_output = attn_output.view(batch_size, -1, attn_output.size(-2), attn_output.size(-1))
else:
attn_output = _flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
query_length,
is_causal=is_causal,
sliding_window=sliding_window,
use_top_left_mask=use_top_left_mask,
deterministic=deterministic,
**kwargs,
) # do not pass position_ids to old flash_attention_forward
if sp_size > 1:
# (batch_size, seq_length, num_head, head_size)
attn_output = gather_heads_scatter_seq(attn_output, head_dim=2, seq_dim=1)
return attn_output
def flash_attention_forward(
module: torch.nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
dropout: float = 0.0,
scaling: Optional[float] = None,
sliding_window: Optional[int] = None,
softcap: Optional[float] = None,
**kwargs,
) -> Tuple[torch.Tensor, None]:
# This is before the transpose
q_len = query.shape[2]
# FA2 uses non-transposed inputs
query = query.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
# FA2 always relies on the value set in the module, so remove it if present in kwargs to avoid passing it twice
kwargs.pop("is_causal", None)
attn_output = _custom_flash_attention_forward(
query,
key,
value,
attention_mask,
query_length=q_len,
is_causal=True,
dropout=dropout,
softmax_scale=scaling,
sliding_window=sliding_window,
softcap=softcap,
use_top_left_mask=_flash_use_top_left_mask,
**kwargs,
)
return attn_output, None