Spaces:
Running
Running
Upload 7 files
Browse files- datasets_loader.py +329 -0
- eval_bbeh.py +185 -0
- eval_mmlupro.py +145 -0
- eval_supergpqa.py +116 -0
- evaluate.bash +79 -0
- generate.py +51 -0
- results_recheck.py +74 -0
datasets_loader.py
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
import re
|
3 |
+
from math_verify import parse, verify
|
4 |
+
import pandas
|
5 |
+
from datasets import load_dataset
|
6 |
+
import random
|
7 |
+
ANSWER_PATTERN_MULTICHOICE = r"(?:\$\$\s*)?\\boxed\{[^}]*?([A-Z])[^}]*\}(?:\s*\$\$)?|(?:\*{0,2}\s*)?(?:Final|Correct)\s*Answer:\s*([A-Z])\."
|
8 |
+
ANSWER_PATTERN = r"(?i)Answer\s*:\s*([^\n]+)"
|
9 |
+
ANSWER_PATTERN_BOXED = r"(?i)\\boxed\s*{([^\n]+)}"
|
10 |
+
|
11 |
+
class DatasetHandler(ABC):
|
12 |
+
def __init__(self, answer_pattern: str = ANSWER_PATTERN_BOXED, num_examples: int = None):
|
13 |
+
self.answer_pattern = answer_pattern
|
14 |
+
self.num_examples = num_examples if num_examples is not None else 1
|
15 |
+
|
16 |
+
@abstractmethod
|
17 |
+
def load_data(self):
|
18 |
+
"""
|
19 |
+
Load the dataset and return a tuple: (splits_dict, answer_type).
|
20 |
+
|
21 |
+
splits_dict: A dictionary where each key is a split name (e.g., 'train', 'test')
|
22 |
+
and the value is the corresponding dataset or data structure.
|
23 |
+
answer_type: A string describing the type of the answer, e.g.:
|
24 |
+
'number', 'text', 'option letter', etc.
|
25 |
+
"""
|
26 |
+
pass
|
27 |
+
|
28 |
+
def extract_answer(self, response: str) -> str:
|
29 |
+
try:
|
30 |
+
return re.search(self.answer_pattern, response).group(1)
|
31 |
+
except:
|
32 |
+
return None
|
33 |
+
|
34 |
+
def compare_answer(self, response: str, answer: str) -> bool:
|
35 |
+
response_answer = self.extract_answer(response)
|
36 |
+
answer = str(answer)
|
37 |
+
response_answer = str(response_answer)
|
38 |
+
if response_answer is None:
|
39 |
+
return False
|
40 |
+
if self.answer_pattern == ANSWER_PATTERN_MULTICHOICE:
|
41 |
+
return response_answer == answer
|
42 |
+
return verify(parse(answer), parse(response_answer))
|
43 |
+
|
44 |
+
def get_score(self, responses: str, answers: str) -> float:
|
45 |
+
scores = []
|
46 |
+
for r,a in zip(responses, answers):
|
47 |
+
if self.compare_answer(r,a):
|
48 |
+
scores.append(1)
|
49 |
+
else:
|
50 |
+
scores.append(0)
|
51 |
+
return scores, sum(scores)/len(scores)
|
52 |
+
|
53 |
+
class MathDatasetHandler(DatasetHandler):
|
54 |
+
def __init__(self, answer_pattern: str = ANSWER_PATTERN_BOXED):
|
55 |
+
super().__init__(answer_pattern)
|
56 |
+
|
57 |
+
def load_data(self):
|
58 |
+
df = pandas.read_csv(
|
59 |
+
f"https://openaipublic.blob.core.windows.net/simple-evals/math_500_test.csv"
|
60 |
+
)
|
61 |
+
examples = [row.to_dict() for _, row in df.iterrows()]
|
62 |
+
questions = [example['Question'] for example in examples]
|
63 |
+
answers = [example['Answer'] for example in examples]
|
64 |
+
|
65 |
+
return questions, answers
|
66 |
+
|
67 |
+
class Gsm8kDatasetHandler(DatasetHandler):
|
68 |
+
def __init__(self, answer_pattern: str = ANSWER_PATTERN_BOXED):
|
69 |
+
super().__init__(answer_pattern)
|
70 |
+
|
71 |
+
def load_data(self):
|
72 |
+
dataset = load_dataset("openai/gsm8k", 'main', split='test')
|
73 |
+
examples = [row for row in dataset]
|
74 |
+
questions = [example['question'] for example in examples]
|
75 |
+
answers = [example["answer"].split('#### ')[-1] for example in examples]
|
76 |
+
return questions, answers
|
77 |
+
|
78 |
+
class AmcDatasetHandler(DatasetHandler):
|
79 |
+
def __init__(self, answer_pattern: str = ANSWER_PATTERN_BOXED):
|
80 |
+
super().__init__(answer_pattern)
|
81 |
+
|
82 |
+
def load_data(self):
|
83 |
+
dataset = load_dataset("zwhe99/amc23", split='test')
|
84 |
+
examples = [row for row in dataset]
|
85 |
+
questions = [example['question'] for example in examples] *32
|
86 |
+
answers = [example['answer'] for example in examples] *32
|
87 |
+
|
88 |
+
return questions, answers
|
89 |
+
|
90 |
+
class MinervaDatasetHandler(DatasetHandler):
|
91 |
+
def __init__(self, answer_pattern: str = ANSWER_PATTERN_BOXED):
|
92 |
+
super().__init__(answer_pattern)
|
93 |
+
|
94 |
+
def load_data(self):
|
95 |
+
dataset = load_dataset("zwhe99/simplerl-minerva-math", split='test')
|
96 |
+
examples = [row for row in dataset]
|
97 |
+
questions = [example['problem'] for example in examples]
|
98 |
+
answers = [example['answer'] for example in examples]
|
99 |
+
|
100 |
+
return questions, answers
|
101 |
+
|
102 |
+
class OlympiadDatasetHandler(DatasetHandler):
|
103 |
+
def __init__(self, answer_pattern: str = ANSWER_PATTERN_BOXED):
|
104 |
+
super().__init__(answer_pattern)
|
105 |
+
|
106 |
+
def load_data(self):
|
107 |
+
dataset = load_dataset("zwhe99/simplerl-OlympiadBench", split='test')
|
108 |
+
examples = [row for row in dataset]
|
109 |
+
questions = [example['question'] for example in examples]
|
110 |
+
answers = [example['final_answer'][0] for example in examples]
|
111 |
+
|
112 |
+
return questions, answers
|
113 |
+
|
114 |
+
class Aime2024DatasetHandler(DatasetHandler):
|
115 |
+
def __init__(self, answer_pattern: str = ANSWER_PATTERN_BOXED):
|
116 |
+
super().__init__(answer_pattern)
|
117 |
+
|
118 |
+
def load_data(self):
|
119 |
+
dataset = load_dataset("HuggingFaceH4/aime_2024", split='train')
|
120 |
+
examples = [row for row in dataset]
|
121 |
+
questions = [example['problem'] for example in examples]*32
|
122 |
+
answers = [example['answer'] for example in examples]*32
|
123 |
+
|
124 |
+
return questions, answers
|
125 |
+
|
126 |
+
|
127 |
+
class Aime2025DatasetHandler(DatasetHandler):
|
128 |
+
def __init__(self, answer_pattern: str = ANSWER_PATTERN_BOXED):
|
129 |
+
super().__init__(answer_pattern)
|
130 |
+
|
131 |
+
def load_data(self):
|
132 |
+
dataset = load_dataset("yentinglin/aime_2025", 'default')['train']
|
133 |
+
examples = [row for row in dataset]
|
134 |
+
questions = [example['problem'] for example in examples]*32
|
135 |
+
answers = [example['answer'] for example in examples]*32
|
136 |
+
|
137 |
+
return questions, answers
|
138 |
+
|
139 |
+
class MmluProDatasetHandler(DatasetHandler):
|
140 |
+
def __init__(self, answer_pattern: str = ANSWER_PATTERN_MULTICHOICE):
|
141 |
+
super().__init__(answer_pattern)
|
142 |
+
|
143 |
+
def load_data(self):
|
144 |
+
dataset = load_dataset('TIGER-Lab/MMLU-Pro', split='test')
|
145 |
+
examples = []
|
146 |
+
for row in dataset:
|
147 |
+
example = {
|
148 |
+
'question': row['question'],
|
149 |
+
'options': row['options'],
|
150 |
+
'answer': row['answer'],
|
151 |
+
'answer_index': row['answer_index'],
|
152 |
+
'category': row['category'],
|
153 |
+
'cot_content': row['cot_content'],
|
154 |
+
'src': row['src']
|
155 |
+
}
|
156 |
+
examples.append(example)
|
157 |
+
random.shuffle(examples)
|
158 |
+
examples = examples[:1000]
|
159 |
+
questions = []
|
160 |
+
answers = []
|
161 |
+
for example in examples:
|
162 |
+
# Format question with options
|
163 |
+
question = example['question'] + "\n\nOptions:\n"
|
164 |
+
for i, opt in enumerate(example['options']):
|
165 |
+
question += f"{chr(65+i)}. {opt}\n"
|
166 |
+
|
167 |
+
questions.append(question)
|
168 |
+
answers.append(example['answer'])
|
169 |
+
|
170 |
+
return questions, answers
|
171 |
+
|
172 |
+
class bbehDatasetHandler(DatasetHandler):
|
173 |
+
def __init__(self, answer_pattern: str = ANSWER_PATTERN_BOXED):
|
174 |
+
super().__init__(answer_pattern)
|
175 |
+
|
176 |
+
def load_data(self):
|
177 |
+
dataset = load_dataset("MrLight/bbeh-eval", split='train')
|
178 |
+
examples = [row for row in dataset]
|
179 |
+
random.shuffle(examples)
|
180 |
+
examples = examples[:1000]
|
181 |
+
questions = [example['question'] for example in examples]
|
182 |
+
answers = [example['answer'] for example in examples]
|
183 |
+
|
184 |
+
return questions, answers
|
185 |
+
|
186 |
+
class SuperGPQADatasetHandler(DatasetHandler):
|
187 |
+
def __init__(self, answer_pattern: str = ANSWER_PATTERN_MULTICHOICE):
|
188 |
+
super().__init__(answer_pattern)
|
189 |
+
|
190 |
+
def load_data(self):
|
191 |
+
dataset = load_dataset('m-a-p/SuperGPQA')
|
192 |
+
examples = []
|
193 |
+
for row in dataset['train']:
|
194 |
+
example = {
|
195 |
+
'question': row['question'],
|
196 |
+
'options': row['options'],
|
197 |
+
'answer': row['answer_letter']
|
198 |
+
}
|
199 |
+
examples.append(example)
|
200 |
+
random.shuffle(examples)
|
201 |
+
examples = examples[:1000]
|
202 |
+
|
203 |
+
questions = []
|
204 |
+
answers = []
|
205 |
+
for example in examples:
|
206 |
+
# Format question with options
|
207 |
+
question = example['question'] + "\n\nOptions:\n"
|
208 |
+
for i, opt in enumerate(example['options']):
|
209 |
+
question += f"{chr(65+i)}. {opt}\n"
|
210 |
+
|
211 |
+
questions.append(question)
|
212 |
+
answers.append(example['answer'])
|
213 |
+
|
214 |
+
return questions, answers
|
215 |
+
|
216 |
+
class GPQA_DatasetHandler(DatasetHandler):
|
217 |
+
def __init__(self, answer_pattern: str = ANSWER_PATTERN_MULTICHOICE):
|
218 |
+
super().__init__(answer_pattern)
|
219 |
+
|
220 |
+
def load_data(self):
|
221 |
+
dataset = load_dataset("Idavidrein/gpqa", "gpqa_diamond",'train')
|
222 |
+
examples = []
|
223 |
+
|
224 |
+
for row in dataset:
|
225 |
+
# Get the question and answers
|
226 |
+
question = row['Question']
|
227 |
+
options = [
|
228 |
+
row['Correct Answer'],
|
229 |
+
row['Incorrect Answer 1'],
|
230 |
+
row['Incorrect Answer 2'],
|
231 |
+
row['Incorrect Answer 3']
|
232 |
+
]
|
233 |
+
# Shuffle options to randomize correct answer position
|
234 |
+
random.shuffle(options)
|
235 |
+
# Find the index of correct answer after shuffling
|
236 |
+
correct_index = options.index(row['Correct Answer'])
|
237 |
+
correct_option = chr(65 + correct_index)
|
238 |
+
|
239 |
+
example = {
|
240 |
+
'question': question,
|
241 |
+
'options': options,
|
242 |
+
'answer': correct_option
|
243 |
+
}
|
244 |
+
examples.append(example)
|
245 |
+
|
246 |
+
# Shuffle and limit to 1000 examples like other handlers
|
247 |
+
random.shuffle(examples)
|
248 |
+
examples = examples[:1000]
|
249 |
+
|
250 |
+
questions = []
|
251 |
+
answers = []
|
252 |
+
for example in examples:
|
253 |
+
# Format question with options
|
254 |
+
question = example['question'] + "\n\nOptions:\n"
|
255 |
+
for i, opt in enumerate(example['options']):
|
256 |
+
question += f"{chr(65+i)}. {opt}\n"
|
257 |
+
|
258 |
+
questions.append(question)
|
259 |
+
answers.append(example['answer'])
|
260 |
+
|
261 |
+
return questions, answers
|
262 |
+
|
263 |
+
|
264 |
+
class Mydataset_DatasetHandler(DatasetHandler):
|
265 |
+
def __init__(self, answer_pattern: str = ANSWER_PATTERN_BOXED, name: str = "qwen3_frequent_solver_v1"):
|
266 |
+
super().__init__(answer_pattern)
|
267 |
+
self.name = name
|
268 |
+
def load_data(self):
|
269 |
+
dataset = load_dataset(self.name)['train']
|
270 |
+
examples = []
|
271 |
+
|
272 |
+
for row in dataset:
|
273 |
+
example = {
|
274 |
+
'question': row['problem'],
|
275 |
+
'answer': row['answer']
|
276 |
+
}
|
277 |
+
examples.append(example)
|
278 |
+
|
279 |
+
# Shuffle and limit to 1000 examples like other handlers
|
280 |
+
random.shuffle(examples)
|
281 |
+
# examples = examples[:1000]
|
282 |
+
|
283 |
+
questions = []
|
284 |
+
answers = []
|
285 |
+
for example in examples:
|
286 |
+
|
287 |
+
questions.append(example['question'])
|
288 |
+
answers.append(example['answer'])
|
289 |
+
|
290 |
+
return questions, answers
|
291 |
+
|
292 |
+
def get_dataset_handler(dataset_name: str,name: str = None) -> DatasetHandler:
|
293 |
+
if dataset_name == "math":
|
294 |
+
return MathDatasetHandler()
|
295 |
+
elif dataset_name == "gsm8k":
|
296 |
+
return Gsm8kDatasetHandler()
|
297 |
+
elif dataset_name == "amc":
|
298 |
+
return AmcDatasetHandler()
|
299 |
+
elif dataset_name == "minerva":
|
300 |
+
return MinervaDatasetHandler()
|
301 |
+
elif dataset_name == "olympiad":
|
302 |
+
return OlympiadDatasetHandler()
|
303 |
+
elif dataset_name == "aime2024":
|
304 |
+
return Aime2024DatasetHandler()
|
305 |
+
elif dataset_name == "aime2025":
|
306 |
+
return Aime2025DatasetHandler()
|
307 |
+
elif dataset_name == "mmlu_pro":
|
308 |
+
return MmluProDatasetHandler()
|
309 |
+
elif dataset_name == "bbeh":
|
310 |
+
return bbehDatasetHandler()
|
311 |
+
elif dataset_name == "super_gpqa":
|
312 |
+
return SuperGPQADatasetHandler()
|
313 |
+
elif dataset_name == "gpqa":
|
314 |
+
return GPQA_DatasetHandler()
|
315 |
+
elif dataset_name == "mydataset":
|
316 |
+
return Mydataset_DatasetHandler(name=name)
|
317 |
+
else:
|
318 |
+
raise ValueError(f"Dataset {dataset_name} not found")
|
319 |
+
|
320 |
+
|
321 |
+
if __name__ == "__main__":
|
322 |
+
print("mmlu_pro")
|
323 |
+
for dataset_name in ["gpqa"]:
|
324 |
+
print(f"Loading {dataset_name} dataset")
|
325 |
+
handler = get_dataset_handler(dataset_name)
|
326 |
+
questions, answers = handler.load_data()
|
327 |
+
print(questions[0])
|
328 |
+
print('-'*100)
|
329 |
+
print(answers[0])
|
eval_bbeh.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
import json
|
3 |
+
import re
|
4 |
+
import random
|
5 |
+
import argparse
|
6 |
+
from transformers import AutoTokenizer
|
7 |
+
from vllm import LLM, SamplingParams
|
8 |
+
|
9 |
+
def extract_last_boxed(text):
|
10 |
+
pattern = r'\\boxed\{((?:[^{}]|\{(?:[^{}]|\{[^{}]*\})*\})*)\}'
|
11 |
+
matches = list(re.finditer(pattern, text))
|
12 |
+
if matches:
|
13 |
+
return matches[-1].group(1)
|
14 |
+
return None
|
15 |
+
|
16 |
+
def extract_last_final_answer(text):
|
17 |
+
pattern1 = r'Final Answer:((?:[^<]|<[^<])*?)\n'
|
18 |
+
pattern2 = r'The answer is:((?:[^<]|<[^<])*?)\n'
|
19 |
+
matches1 = list(re.finditer(pattern1, text))
|
20 |
+
matches2 = list(re.finditer(pattern2, text))
|
21 |
+
if matches1:
|
22 |
+
return matches1[-1].group(1)
|
23 |
+
elif matches2:
|
24 |
+
return matches2[-1].group(1)
|
25 |
+
return None
|
26 |
+
|
27 |
+
def extract_solution(solution_str):
|
28 |
+
if '<|im_start|>user' in solution_str:
|
29 |
+
model_output = re.sub(r'^.*?<\|im_start\|>assistant', '<|im_start|>assistant', solution_str, flags=re.DOTALL, count=1)
|
30 |
+
elif 'Assistant:' in solution_str:
|
31 |
+
model_output = solution_str.split('Assistant:')[-1].strip()
|
32 |
+
else:
|
33 |
+
model_output = solution_str
|
34 |
+
|
35 |
+
stop_words = ["</s>", "<|im_end|>", "<|endoftext|>"]
|
36 |
+
for stop_word in stop_words:
|
37 |
+
if stop_word in model_output:
|
38 |
+
model_output = model_output.split(stop_word)[0].strip()
|
39 |
+
|
40 |
+
extract_boxed_answer = extract_last_boxed(model_output)
|
41 |
+
if extract_boxed_answer:
|
42 |
+
return extract_boxed_answer
|
43 |
+
else:
|
44 |
+
return extract_last_final_answer(model_output)
|
45 |
+
|
46 |
+
def strip_latex(response: str) -> str:
|
47 |
+
if response.startswith("$") and response.endswith("$"):
|
48 |
+
response = response[1:-1]
|
49 |
+
if "boxed{" in response and response.endswith("}"):
|
50 |
+
response = response[0:-1].split("boxed{")[1]
|
51 |
+
if "text{" in response and response.endswith("}"):
|
52 |
+
response = response[0:-1].split("text{")[1]
|
53 |
+
if "texttt{" in response and response.endswith("}"):
|
54 |
+
response = response[0:-1].split("texttt{")[1]
|
55 |
+
return response
|
56 |
+
|
57 |
+
|
58 |
+
def extract_answer(sample: str) -> str:
|
59 |
+
if sample is None:
|
60 |
+
sample = ""
|
61 |
+
"""Extracts the final answer from the sample."""
|
62 |
+
answer_prefixes = [
|
63 |
+
"The answer is:",
|
64 |
+
"The final answer is ",
|
65 |
+
"The final answer is: ",
|
66 |
+
"The answer is "
|
67 |
+
]
|
68 |
+
answer = sample
|
69 |
+
for answer_prefix in answer_prefixes:
|
70 |
+
if answer_prefix in answer:
|
71 |
+
answer = answer.split(answer_prefix)[-1].strip()
|
72 |
+
if answer.endswith("."):
|
73 |
+
answer = answer[:-1]
|
74 |
+
return strip_latex(answer)
|
75 |
+
|
76 |
+
|
77 |
+
def fuzzy_match(prediction: str, reference: str) -> bool:
|
78 |
+
"""Fuzzy match function for BigBench Extra Hard."""
|
79 |
+
if prediction == reference:
|
80 |
+
return True
|
81 |
+
|
82 |
+
# (a) vs a
|
83 |
+
if len(prediction) == 3 and prediction[0] == "(" and prediction[-1] == ")":
|
84 |
+
return prediction[1] == reference
|
85 |
+
if len(reference) == 3 and reference[0] == "(" and reference[-1] == ")":
|
86 |
+
return reference[1] == prediction
|
87 |
+
|
88 |
+
# Numbers
|
89 |
+
try:
|
90 |
+
if float(prediction) == float(reference):
|
91 |
+
return True
|
92 |
+
except ValueError:
|
93 |
+
pass
|
94 |
+
|
95 |
+
# quote issues
|
96 |
+
if prediction.replace("'", "") == reference.replace("'", ""):
|
97 |
+
return True
|
98 |
+
|
99 |
+
# Bracket issues
|
100 |
+
if f"[{reference}]" == prediction or f"[{prediction}]" == reference:
|
101 |
+
return True
|
102 |
+
|
103 |
+
# Question mark issues
|
104 |
+
if prediction.endswith("?") and prediction[:-1] == reference:
|
105 |
+
return True
|
106 |
+
|
107 |
+
return False
|
108 |
+
|
109 |
+
|
110 |
+
def preprocess_sample(sample: str) -> str:
|
111 |
+
if sample is None:
|
112 |
+
sample = ""
|
113 |
+
prediction = extract_answer(sample.strip()).lower()
|
114 |
+
prediction = prediction.replace(", ", ",").replace("**", "")
|
115 |
+
prediction = prediction.split("\n")[0]
|
116 |
+
prediction = prediction[0:-1] if prediction.endswith(".") else prediction
|
117 |
+
return prediction
|
118 |
+
|
119 |
+
|
120 |
+
def preprocess_reference(reference: str) -> str:
|
121 |
+
reference = reference.strip().lower()
|
122 |
+
reference = reference.replace(", ", ",")
|
123 |
+
return reference
|
124 |
+
|
125 |
+
|
126 |
+
def evaluate_correctness(sample: str, reference: str) -> bool:
|
127 |
+
prediction = preprocess_sample(sample)
|
128 |
+
reference = preprocess_reference(reference)
|
129 |
+
return fuzzy_match(prediction, reference)
|
130 |
+
|
131 |
+
|
132 |
+
if __name__ == "__main__":
|
133 |
+
parser = argparse.ArgumentParser()
|
134 |
+
parser.add_argument("--model_path", type=str, required=True, help="Path to the model directory")
|
135 |
+
parser.add_argument("--output_file", type=str, default="outputs.json", help="File to save results")
|
136 |
+
args = parser.parse_args()
|
137 |
+
|
138 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
|
139 |
+
llm = LLM(model=args.model_path, tensor_parallel_size=4,gpu_memory_utilization=0.85)
|
140 |
+
dataset = datasets.load_dataset('MrLight/bbeh-eval')
|
141 |
+
categories = sorted(list(set(dataset['train']['task'])))
|
142 |
+
print("Categories:", categories)
|
143 |
+
per_category_accuracy = {c: [0, 0] for c in categories}
|
144 |
+
success, fail = 0, 0
|
145 |
+
answers = []
|
146 |
+
|
147 |
+
print('----------------- Start Answering -------------------')
|
148 |
+
|
149 |
+
for category in categories:
|
150 |
+
category_entries = [entry for entry in dataset['train'] if entry['task'] == category]
|
151 |
+
prompts = []
|
152 |
+
for entry in category_entries:
|
153 |
+
query = entry['question'] + '\n'
|
154 |
+
messages = [{
|
155 |
+
"role": "user",
|
156 |
+
"content": query + '\nPlease reason step by step, and put your final answer option within \\boxed{}.'
|
157 |
+
}]
|
158 |
+
if tokenizer.chat_template:
|
159 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, enable_thinking=False)
|
160 |
+
else:
|
161 |
+
prompt = "user: " + query + '\nPlease reason step by step, and put your final answer option within \\boxed{}. Only put the letter in the box, e.g. \\boxed{A}. There is only one correct answer.'
|
162 |
+
prompts.append(prompt)
|
163 |
+
|
164 |
+
sampling_params = SamplingParams(temperature=0, top_p=1, max_tokens=8192)
|
165 |
+
outputs = llm.generate(prompts, sampling_params)
|
166 |
+
|
167 |
+
for entry, output in zip(category_entries, outputs):
|
168 |
+
answer = output.outputs[0].text
|
169 |
+
entry['solution'] = answer
|
170 |
+
answers.append(entry)
|
171 |
+
answer = extract_solution(answer)
|
172 |
+
if evaluate_correctness(answer, entry['answer']):
|
173 |
+
success += 1
|
174 |
+
per_category_accuracy[category][0] += 1
|
175 |
+
else:
|
176 |
+
fail += 1
|
177 |
+
per_category_accuracy[category][1] += 1
|
178 |
+
|
179 |
+
print(f"{category}: {per_category_accuracy[category][0] / (per_category_accuracy[category][0] + per_category_accuracy[category][1]):.4f}")
|
180 |
+
|
181 |
+
with open(args.output_file, 'w') as f:
|
182 |
+
json.dump(answers, f, indent=2)
|
183 |
+
with open('final_results.jsonl', 'a') as f:
|
184 |
+
json.dump({"dataset": "bbeh", "model": args.model_path, "accuracy": round(success / (success + fail)*100, 2)}, f, indent=2)
|
185 |
+
print("Overall Accuracy:", success / (success + fail))
|
eval_mmlupro.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
import json
|
3 |
+
import re
|
4 |
+
import random
|
5 |
+
import argparse
|
6 |
+
from transformers import AutoTokenizer
|
7 |
+
from vllm import LLM, SamplingParams
|
8 |
+
|
9 |
+
def extract_last_boxed(text):
|
10 |
+
pattern = r'\\boxed\{((?:[^{}]|\{(?:[^{}]|\{[^{}]*\})*\})*)\}'
|
11 |
+
matches = list(re.finditer(pattern, text))
|
12 |
+
if matches:
|
13 |
+
return matches[-1].group(1)
|
14 |
+
return None
|
15 |
+
|
16 |
+
def extract_last_final_answer(text):
|
17 |
+
pattern1 = r'Final Answer:((?:[^<]|<[^<])*?)\n'
|
18 |
+
pattern2 = r'The answer is:((?:[^<]|<[^<])*?)\n'
|
19 |
+
matches1 = list(re.finditer(pattern1, text))
|
20 |
+
matches2 = list(re.finditer(pattern2, text))
|
21 |
+
if matches1:
|
22 |
+
return matches1[-1].group(1)
|
23 |
+
elif matches2:
|
24 |
+
return matches2[-1].group(1)
|
25 |
+
return None
|
26 |
+
|
27 |
+
def extract_solution(solution_str):
|
28 |
+
if '<|im_start|>user' in solution_str:
|
29 |
+
model_output = re.sub(r'^.*?<\|im_start\|>assistant', '<|im_start|>assistant', solution_str, flags=re.DOTALL, count=1)
|
30 |
+
elif 'Assistant:' in solution_str:
|
31 |
+
model_output = solution_str.split('Assistant:')[-1].strip()
|
32 |
+
else:
|
33 |
+
model_output = solution_str
|
34 |
+
|
35 |
+
stop_words = ["</s>", "<|im_end|>", "<|endoftext|>"]
|
36 |
+
for stop_word in stop_words:
|
37 |
+
if stop_word in model_output:
|
38 |
+
model_output = model_output.split(stop_word)[0].strip()
|
39 |
+
|
40 |
+
extract_boxed_answer = extract_last_boxed(model_output)
|
41 |
+
if extract_boxed_answer:
|
42 |
+
return extract_boxed_answer
|
43 |
+
else:
|
44 |
+
return extract_last_final_answer(model_output)
|
45 |
+
|
46 |
+
def form_options(options: list):
|
47 |
+
option_str = 'Options are:\n'
|
48 |
+
opts = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J']
|
49 |
+
for opt, o in zip(options, opts):
|
50 |
+
option_str += f'({o}): {opt}\n'
|
51 |
+
return option_str
|
52 |
+
|
53 |
+
def get_prediction(output):
|
54 |
+
solution = extract_solution(output)
|
55 |
+
if solution is None:
|
56 |
+
return random.choice(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'])
|
57 |
+
for option in ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J']:
|
58 |
+
if option in solution:
|
59 |
+
return option
|
60 |
+
return random.choice(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'])
|
61 |
+
|
62 |
+
if __name__ == "__main__":
|
63 |
+
parser = argparse.ArgumentParser()
|
64 |
+
parser.add_argument("--model_path", type=str, required=True, help="Path to the model directory")
|
65 |
+
parser.add_argument("--output_file", type=str, default="outputs.json", help="File to save results")
|
66 |
+
args = parser.parse_args()
|
67 |
+
|
68 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
|
69 |
+
llm = LLM(model=args.model_path, tensor_parallel_size=4,gpu_memory_utilization=0.85)
|
70 |
+
dataset = datasets.load_dataset('TIGER-Lab/MMLU-Pro')
|
71 |
+
|
72 |
+
categories = ['computer science', 'math', 'chemistry', 'engineering', 'law', 'biology',
|
73 |
+
'health', 'physics', 'business', 'philosophy', 'economics', 'other',
|
74 |
+
'psychology', 'history']
|
75 |
+
# For each category store [correct_count, incorrect_count]
|
76 |
+
per_category_accuracy = {c: [0, 0] for c in categories}
|
77 |
+
success, fail = 0, 0
|
78 |
+
answers = []
|
79 |
+
|
80 |
+
print('----------------- Start Answering -------------------')
|
81 |
+
|
82 |
+
for category in categories:
|
83 |
+
category_entries = [entry for entry in dataset['test'] if entry['category'] == category]
|
84 |
+
prompts = []
|
85 |
+
for entry in category_entries:
|
86 |
+
query = entry['question'] + '\n' + form_options(entry['options']) + '\n'
|
87 |
+
messages = [{
|
88 |
+
"role": "user",
|
89 |
+
"content": query + '\nPlease reason step by step, and put your final answer option within \\boxed{}. Only put the option letter in the box, e.g. \\boxed{A}. There is only one correct answer.'
|
90 |
+
}]
|
91 |
+
if tokenizer.chat_template:
|
92 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, enable_thinking=False)
|
93 |
+
else:
|
94 |
+
prompt = "user: " + query + '\nPlease reason step by step, and put your final answer option within \\boxed{}. Only put the letter in the box, e.g. \\boxed{A}. There is only one correct answer.'
|
95 |
+
prompts.append(prompt)
|
96 |
+
|
97 |
+
sampling_params = SamplingParams(temperature=0, top_p=1, max_tokens=8192)
|
98 |
+
outputs = llm.generate(prompts, sampling_params)
|
99 |
+
|
100 |
+
for entry, output in zip(category_entries, outputs):
|
101 |
+
answer = output.outputs[0].text
|
102 |
+
entry['solution'] = answer
|
103 |
+
answers.append(entry)
|
104 |
+
|
105 |
+
prediction = get_prediction(answer)
|
106 |
+
if entry["answer"] == prediction:
|
107 |
+
success += 1
|
108 |
+
per_category_accuracy[category][0] += 1
|
109 |
+
else:
|
110 |
+
fail += 1
|
111 |
+
per_category_accuracy[category][1] += 1
|
112 |
+
|
113 |
+
# Print category accuracy as soon as it's computed
|
114 |
+
total_cat = per_category_accuracy[category][0] + per_category_accuracy[category][1]
|
115 |
+
cat_accuracy = per_category_accuracy[category][0] / total_cat if total_cat > 0 else 0.0
|
116 |
+
print(f"{category}: {cat_accuracy:.4f}")
|
117 |
+
|
118 |
+
# Save all the answers in a JSON file
|
119 |
+
with open(args.output_file, 'w') as f:
|
120 |
+
json.dump(answers, f, indent=2)
|
121 |
+
|
122 |
+
# Calculate per-category report, micro average, and macro average
|
123 |
+
print("\n----- Accuracy Report -----")
|
124 |
+
category_accuracy_report = {}
|
125 |
+
for category in categories:
|
126 |
+
correct, incorrect = per_category_accuracy[category]
|
127 |
+
total = correct + incorrect
|
128 |
+
if total > 0:
|
129 |
+
accuracy = correct / total
|
130 |
+
else:
|
131 |
+
accuracy = 0.0
|
132 |
+
category_accuracy_report[category] = accuracy
|
133 |
+
print(f"{category}: {correct}/{total} -> {accuracy*100:.2f}% accuracy")
|
134 |
+
|
135 |
+
total_predictions = success + fail
|
136 |
+
micro_avg = success / total_predictions if total_predictions > 0 else 0.0
|
137 |
+
print(f"\nMicro Average Accuracy: {micro_avg*100:.2f}%")
|
138 |
+
with open('final_results.jsonl', 'a') as f:
|
139 |
+
json.dump({"dataset": "mmlupro", "model": args.model_path, "accuracy": round(micro_avg*100, 2)}, f, indent=2)
|
140 |
+
valid_categories = [cat for cat in categories if (per_category_accuracy[cat][0] + per_category_accuracy[cat][1] > 0)]
|
141 |
+
if valid_categories:
|
142 |
+
macro_avg = sum(category_accuracy_report[cat] for cat in valid_categories) / len(valid_categories)
|
143 |
+
else:
|
144 |
+
macro_avg = 0.0
|
145 |
+
print(f"Macro Average Accuracy: {macro_avg*100:.2f}%")
|
eval_supergpqa.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
import json
|
3 |
+
import re
|
4 |
+
import random
|
5 |
+
import argparse
|
6 |
+
from transformers import AutoTokenizer
|
7 |
+
from vllm import LLM, SamplingParams
|
8 |
+
|
9 |
+
def extract_last_boxed(text):
|
10 |
+
pattern = r'\\boxed\{((?:[^{}]|\{(?:[^{}]|\{[^{}]*\})*\})*)\}'
|
11 |
+
matches = list(re.finditer(pattern, text))
|
12 |
+
if matches:
|
13 |
+
return matches[-1].group(1)
|
14 |
+
return None
|
15 |
+
|
16 |
+
def extract_last_final_answer(text):
|
17 |
+
pattern1 = r'Final Answer:((?:[^<]|<[^<])*?)\n'
|
18 |
+
pattern2 = r'The answer is:((?:[^<]|<[^<])*?)\n'
|
19 |
+
matches1 = list(re.finditer(pattern1, text))
|
20 |
+
matches2 = list(re.finditer(pattern2, text))
|
21 |
+
if matches1:
|
22 |
+
return matches1[-1].group(1)
|
23 |
+
elif matches2:
|
24 |
+
return matches2[-1].group(1)
|
25 |
+
return None
|
26 |
+
|
27 |
+
def extract_solution(solution_str):
|
28 |
+
if '<|im_start|>user' in solution_str:
|
29 |
+
model_output = re.sub(r'^.*?<\|im_start\|>assistant', '<|im_start|>assistant', solution_str, flags=re.DOTALL, count=1)
|
30 |
+
elif 'Assistant:' in solution_str:
|
31 |
+
model_output = solution_str.split('Assistant:')[-1].strip()
|
32 |
+
else:
|
33 |
+
model_output = solution_str
|
34 |
+
|
35 |
+
stop_words = ["</s>", "<|im_end|>", "<|endoftext|>"]
|
36 |
+
for stop_word in stop_words:
|
37 |
+
if stop_word in model_output:
|
38 |
+
model_output = model_output.split(stop_word)[0].strip()
|
39 |
+
|
40 |
+
extract_boxed_answer = extract_last_boxed(model_output)
|
41 |
+
if extract_boxed_answer:
|
42 |
+
return extract_boxed_answer
|
43 |
+
else:
|
44 |
+
return extract_last_final_answer(model_output)
|
45 |
+
|
46 |
+
def form_options(options: list):
|
47 |
+
option_str = 'Options are:\n'
|
48 |
+
opts = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J']
|
49 |
+
for opt, o in zip(options, opts):
|
50 |
+
option_str += f'({o}): {opt}\n'
|
51 |
+
return option_str
|
52 |
+
|
53 |
+
def get_prediction(output):
|
54 |
+
solution = extract_solution(output)
|
55 |
+
if solution is None:
|
56 |
+
return random.choice(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'])
|
57 |
+
for option in ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J']:
|
58 |
+
if option in solution:
|
59 |
+
return option
|
60 |
+
return random.choice(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'])
|
61 |
+
|
62 |
+
if __name__ == "__main__":
|
63 |
+
parser = argparse.ArgumentParser()
|
64 |
+
parser.add_argument("--model_path", type=str, required=True, help="Path to the model directory")
|
65 |
+
parser.add_argument("--output_file", type=str, default="outputs.json", help="File to save results")
|
66 |
+
args = parser.parse_args()
|
67 |
+
|
68 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
|
69 |
+
llm = LLM(model=args.model_path, tensor_parallel_size=4,gpu_memory_utilization=0.85)
|
70 |
+
print('start loading dataset')
|
71 |
+
dataset = datasets.load_dataset('m-a-p/SuperGPQA')
|
72 |
+
categories = ['Engineering', 'Medicine', 'Science', 'Philosophy', 'Military Science', 'Economics', 'Management', 'Sociology', 'Literature and Arts', 'History', 'Agronomy', 'Law', 'Education']
|
73 |
+
per_category_accuracy = {c: [0, 0] for c in categories}
|
74 |
+
success, fail = 0, 0
|
75 |
+
answers = []
|
76 |
+
|
77 |
+
print('----------------- Start Answering -------------------')
|
78 |
+
|
79 |
+
for category in categories:
|
80 |
+
category_entries = [entry for entry in dataset['train'] if entry['discipline'] == category]
|
81 |
+
prompts = []
|
82 |
+
for entry in category_entries:
|
83 |
+
query = entry['question'] + '\n' + form_options(entry['options']) + '\n'
|
84 |
+
messages = [{
|
85 |
+
"role": "user",
|
86 |
+
"content": query + '\nPlease reason step by step, and put your final answer option within \\boxed{}. Only put the letter in the box, e.g. \\boxed{A}. There is only one correct answer.'
|
87 |
+
}]
|
88 |
+
if tokenizer.chat_template:
|
89 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, enable_thinking=False)
|
90 |
+
else:
|
91 |
+
prompt = "user: " + query + '\nPlease reason step by step, and put your final answer option within \\boxed{}. Only put the letter in the box, e.g. \\boxed{A}. There is only one correct answer.'
|
92 |
+
prompts.append(prompt)
|
93 |
+
|
94 |
+
sampling_params = SamplingParams(temperature=0, top_p=1, max_tokens=8192)
|
95 |
+
outputs = llm.generate(prompts, sampling_params)
|
96 |
+
|
97 |
+
for entry, output in zip(category_entries, outputs):
|
98 |
+
answer = output.outputs[0].text
|
99 |
+
entry['solution'] = answer
|
100 |
+
answers.append(entry)
|
101 |
+
|
102 |
+
prediction = get_prediction(answer)
|
103 |
+
if entry["answer_letter"] == prediction:
|
104 |
+
success += 1
|
105 |
+
per_category_accuracy[category][0] += 1
|
106 |
+
else:
|
107 |
+
fail += 1
|
108 |
+
per_category_accuracy[category][1] += 1
|
109 |
+
|
110 |
+
print(f"{category}: {per_category_accuracy[category][0] / (per_category_accuracy[category][0] + per_category_accuracy[category][1]):.4f}")
|
111 |
+
|
112 |
+
with open(args.output_file, 'w') as f:
|
113 |
+
json.dump(answers, f, indent=2)
|
114 |
+
with open('final_results.jsonl', 'a') as f:
|
115 |
+
json.dump({"dataset": "supergpqa", "model": args.model_path, "accuracy": round(success / (success + fail)*100, 2)}, f, indent=2)
|
116 |
+
print("Overall Accuracy:", success / (success + fail))
|
evaluate.bash
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
export VLLM_DISABLE_COMPILE_CACHE=1
|
3 |
+
model_name=$1
|
4 |
+
|
5 |
+
MODEL_NAMES=(
|
6 |
+
$model_name
|
7 |
+
)
|
8 |
+
|
9 |
+
TASKS=(
|
10 |
+
"math"
|
11 |
+
"gsm8k"
|
12 |
+
"amc"
|
13 |
+
"minerva"
|
14 |
+
"olympiad"
|
15 |
+
"aime2024"
|
16 |
+
"aime2025"
|
17 |
+
)
|
18 |
+
|
19 |
+
GPU_QUEUE=($(nvidia-smi --query-gpu=index --format=csv,noheader))
|
20 |
+
echo "Available GPUs: ${GPU_QUEUE[@]}"
|
21 |
+
|
22 |
+
declare -A pids
|
23 |
+
|
24 |
+
start_job() {
|
25 |
+
local gpu_id="$1"
|
26 |
+
local model="$2"
|
27 |
+
local task="$3"
|
28 |
+
|
29 |
+
echo "==> [$(date '+%Y-%m-%d %H:%M:%S')] Start task [${task}] with model [${model}] on GPU [${gpu_id}] ..."
|
30 |
+
|
31 |
+
CUDA_VISIBLE_DEVICES="${gpu_id}" \
|
32 |
+
python evaluation/generate.py --model "${model}" --dataset "${task}" &
|
33 |
+
|
34 |
+
pids["${gpu_id}"]=$!
|
35 |
+
}
|
36 |
+
|
37 |
+
for MODEL_NAME in "${MODEL_NAMES[@]}"; do
|
38 |
+
echo "==> Processing model: ${MODEL_NAME}"
|
39 |
+
TASK_INDEX=0
|
40 |
+
NUM_TASKS=${#TASKS[@]}
|
41 |
+
|
42 |
+
while :; do
|
43 |
+
while [ ${#GPU_QUEUE[@]} -gt 0 ] && [ ${TASK_INDEX} -lt ${NUM_TASKS} ]; do
|
44 |
+
gpu_id="${GPU_QUEUE[0]}"
|
45 |
+
GPU_QUEUE=("${GPU_QUEUE[@]:1}")
|
46 |
+
|
47 |
+
task="${TASKS[${TASK_INDEX}]}"
|
48 |
+
((TASK_INDEX++))
|
49 |
+
|
50 |
+
start_job "$gpu_id" "$MODEL_NAME" "$task"
|
51 |
+
done
|
52 |
+
|
53 |
+
if [ ${TASK_INDEX} -ge ${NUM_TASKS} ] && [ ${#pids[@]} -eq 0 ]; then
|
54 |
+
break
|
55 |
+
fi
|
56 |
+
|
57 |
+
for gpu_id in "${!pids[@]}"; do
|
58 |
+
pid="${pids[$gpu_id]}"
|
59 |
+
if ! kill -0 "$pid" 2>/dev/null; then
|
60 |
+
echo "==> [$(date '+%Y-%m-%d %H:%M:%S')] GPU [${gpu_id}] job finished with PID [${pid}]."
|
61 |
+
unset pids["$gpu_id"]
|
62 |
+
GPU_QUEUE+=("$gpu_id")
|
63 |
+
fi
|
64 |
+
done
|
65 |
+
|
66 |
+
sleep 1
|
67 |
+
done
|
68 |
+
done
|
69 |
+
|
70 |
+
python evaluation/results_recheck.py --model_name $model_name &
|
71 |
+
|
72 |
+
python evaluation/eval_supergpqa.py --model_path $model_name
|
73 |
+
python evaluation/eval_bbeh.py --model_path $model_name
|
74 |
+
python evaluation/eval_mmlupro.py --model_path $model_name
|
75 |
+
|
76 |
+
|
77 |
+
python evaluation/test.py --model_name $model_name
|
78 |
+
|
79 |
+
echo "==> All tasks have finished!"
|
generate.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import vllm
|
2 |
+
import argparse
|
3 |
+
import evaluation.datasets_loader as datasets_loader
|
4 |
+
from transformers import AutoTokenizer
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
|
8 |
+
STORAGE_PATH = os.getenv("STORAGE_PATH")
|
9 |
+
|
10 |
+
def main(args):
|
11 |
+
print("STORAGE_PATH")
|
12 |
+
print(STORAGE_PATH)
|
13 |
+
with open('tokens.json','r') as f:
|
14 |
+
tokens = json.load(f)
|
15 |
+
print(args.model, args.dataset)
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model)
|
17 |
+
model = vllm.LLM(
|
18 |
+
model=args.model,
|
19 |
+
tokenizer=args.model,
|
20 |
+
gpu_memory_utilization=0.85
|
21 |
+
)
|
22 |
+
sample_params = vllm.SamplingParams(
|
23 |
+
max_tokens=4096,
|
24 |
+
temperature=0.0,
|
25 |
+
stop_token_ids=[tokenizer.eos_token_id],
|
26 |
+
)
|
27 |
+
handler = datasets_loader.get_dataset_handler(args.dataset,args.name)
|
28 |
+
questions, answers = handler.load_data()
|
29 |
+
chats=[[{"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{}."},{"role": "user", "content": question}] for question in questions]
|
30 |
+
if tokenizer.chat_template:
|
31 |
+
prompts = [tokenizer.apply_chat_template(chat, tokenize=False,add_generation_prompt=True, add_special_tokens=True, enable_thinking=False) for chat in chats]
|
32 |
+
else:
|
33 |
+
prompts = ["system: " + chat[0]["content"] + '\n' + "user: " + chat[1]["content"] + '\nPlease reason step by step, and put your final answer within \\boxed{}.' for chat in chats]
|
34 |
+
responses = model.generate(prompts, sampling_params=sample_params,use_tqdm=True)
|
35 |
+
responses = [response.outputs[0].text for response in responses]
|
36 |
+
scores,average_score = handler.get_score(responses, answers)
|
37 |
+
results = [{"question": question, "answer": answer, "response": response, "score": score} for question, answer, response, score in zip(questions, answers, responses, scores)]
|
38 |
+
print(f"Average score: {average_score}")
|
39 |
+
results.append({"average_score": average_score})
|
40 |
+
os.makedirs(f"{STORAGE_PATH}/evaluation/{args.model.replace('/', '_')}", exist_ok=True)
|
41 |
+
with open(f"{STORAGE_PATH}/evaluation/{args.model.replace('/', '_')}/results_{args.dataset}.json", "w") as f:
|
42 |
+
json.dump(results, f, indent=4)
|
43 |
+
|
44 |
+
|
45 |
+
if __name__ == "__main__":
|
46 |
+
parser = argparse.ArgumentParser()
|
47 |
+
parser.add_argument("--model", type=str, default="Qwen/Qwen3-4B")
|
48 |
+
parser.add_argument("--dataset", type=str, default="math")
|
49 |
+
parser.add_argument("--name", type=str, default=None)
|
50 |
+
args = parser.parse_args()
|
51 |
+
main(args)
|
results_recheck.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from mathruler.grader import extract_boxed_content, grade_answer
|
3 |
+
import openai
|
4 |
+
import requests
|
5 |
+
from tqdm import tqdm
|
6 |
+
import random
|
7 |
+
import argparse
|
8 |
+
import os
|
9 |
+
|
10 |
+
parser = argparse.ArgumentParser()
|
11 |
+
parser.add_argument("--model_name", type=str, default="Qwen/Qwen2.5-7B-Instruct")
|
12 |
+
args = parser.parse_args()
|
13 |
+
|
14 |
+
STORAGE_PATH = os.getenv("STORAGE_PATH")
|
15 |
+
api_urls = []
|
16 |
+
api_keys=[]
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
def process_example(answer, response):
|
21 |
+
try:
|
22 |
+
example = {
|
23 |
+
"model": "gpt-4o",
|
24 |
+
"messages": [
|
25 |
+
{"role": "system", "content": "You are a math answer checker."},
|
26 |
+
{"role": "user", "content": f"Hi, there is a answer: {answer}\n\n, and the ground truth answer is: {response}\n\n, please check whether the answer is correct or not, and return the **only** Yes or No."}
|
27 |
+
],
|
28 |
+
"temperature": 0.1
|
29 |
+
}
|
30 |
+
api_index = random.randint(0, len(api_urls)-1)
|
31 |
+
api_url = api_urls[api_index]
|
32 |
+
api_key = api_keys[api_index]
|
33 |
+
response = requests.post(api_url, headers={"api-key": api_key,"Content-Type": "application/json"}, json=example, timeout=20)
|
34 |
+
return response.json()['choices'][0]['message']['content']
|
35 |
+
except Exception as e:
|
36 |
+
print(e)
|
37 |
+
return "No"
|
38 |
+
new_results = []
|
39 |
+
for model_name in [args.model_name]:
|
40 |
+
for dataset in [
|
41 |
+
"math",
|
42 |
+
"gsm8k",
|
43 |
+
"amc",
|
44 |
+
"minerva",
|
45 |
+
"olympiad",
|
46 |
+
"aime2024",
|
47 |
+
"aime2025",
|
48 |
+
]:
|
49 |
+
with open(f'{STORAGE_PATH}/evaluation/{model_name.replace("/","_")}/results_{dataset}.json', 'r') as f:
|
50 |
+
results = json.load(f)
|
51 |
+
|
52 |
+
for i in tqdm(range(len(results)-1)):
|
53 |
+
if results[i]['score'] < 0.5:
|
54 |
+
gpt_check = process_example(results[i]['answer'],results[i]['response'])
|
55 |
+
if "yes" in gpt_check.lower():
|
56 |
+
results[i]['score']=1
|
57 |
+
new_results.append({
|
58 |
+
'model': model_name,
|
59 |
+
'dataset': dataset,
|
60 |
+
'score': round(sum([result['score'] for result in results[:-1]])/len(results[:-1])*100, 2)
|
61 |
+
})
|
62 |
+
print(new_results)
|
63 |
+
with open(f'final_results.jsonl', 'a') as f:
|
64 |
+
json.dump({
|
65 |
+
'model': model_name,
|
66 |
+
'dataset': dataset,
|
67 |
+
'score': round(sum([result['score'] for result in results[:-1]])/len(results[:-1])*100, 2)
|
68 |
+
}, f)
|
69 |
+
f.write('\n')
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
|