Gatsby767 commited on
Commit
8607dc3
·
verified ·
1 Parent(s): b0dd80d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -70
app.py CHANGED
@@ -1,83 +1,59 @@
1
- import os
2
  import gradio as gr
3
- import torch
4
- from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
5
- import threading
6
-
7
- import app_math as app_math # keeping your existing import
8
-
9
- # ---- Model setup ----
10
- HF_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
11
- MODEL_ID = "HuggingFaceH4/zephyr-7b-beta"
12
-
13
- # Automatically map model across available devices (GPU/CPU)
14
- tokenizer = AutoTokenizer.from_pretrained(
15
- MODEL_ID,
16
- token=HF_TOKEN,
17
- )
18
-
19
- model = AutoModelForCausalLM.from_pretrained(
20
- MODEL_ID,
21
- device_map="auto", # << key change
22
- torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
23
- low_cpu_mem_usage=True,
24
- token=HF_TOKEN,
25
- )
26
-
27
- # Ensure pad token is set
28
- if tokenizer.pad_token_id is None and tokenizer.eos_token_id is not None:
29
- tokenizer.pad_token_id = tokenizer.eos_token_id
30
-
31
-
32
- def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
33
- # Build chat messages
34
  messages = [{"role": "system", "content": system_message}]
35
- for u, a in history:
36
- if u:
37
- messages.append({"role": "user", "content": u})
38
- if a:
39
- messages.append({"role": "assistant", "content": a})
40
  messages.append({"role": "user", "content": message})
41
 
42
- # Tokenize with Zephyr's chat template
43
- inputs = tokenizer.apply_chat_template(
44
- messages,
45
- add_generation_prompt=True,
46
- tokenize=True,
47
- return_tensors="pt",
48
- ).to(model.device)
49
-
50
- # Stream generation
51
- streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
52
-
53
- gen_kwargs = {
54
- "inputs": inputs,
55
- "max_new_tokens": int(max_tokens),
56
- "do_sample": True,
57
- "temperature": float(temperature),
58
- "top_p": float(top_p),
59
- "eos_token_id": tokenizer.eos_token_id,
60
- "pad_token_id": tokenizer.pad_token_id,
61
- "streamer": streamer,
62
- }
63
-
64
- thread = threading.Thread(target=model.generate, kwargs=gen_kwargs)
65
- thread.start()
66
-
67
- partial = ""
68
- for new_text in streamer:
69
- partial += new_text
70
- yield partial
71
-
72
-
73
- # ---- Gradio UI ----
74
  demo = gr.ChatInterface(
75
  respond,
76
  additional_inputs=[
77
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
78
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
79
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
80
- gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
 
 
 
 
 
 
81
  ],
82
  )
83
 
@@ -85,3 +61,4 @@ if __name__ == "__main__":
85
  demo.launch()
86
 
87
 
 
 
 
1
  import gradio as gr
2
+ from witness.witness_rzero import WitnessRZero
3
+ import app_math as app_math
4
+
5
+ # Instantiate WitnessRZero – change device to "cuda" if GPU is available
6
+ wrz = WitnessRZero(device="cpu")
7
+
8
+ def respond(
9
+ message,
10
+ history: list[tuple[str, str]],
11
+ system_message,
12
+ max_tokens,
13
+ temperature,
14
+ top_p,
15
+ ):
16
+ # Build conversation history in OpenAI-style message format
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  messages = [{"role": "system", "content": system_message}]
18
+ for val in history:
19
+ if val[0]:
20
+ messages.append({"role": "user", "content": val[0]})
21
+ if val[1]:
22
+ messages.append({"role": "assistant", "content": val[1]})
23
  messages.append({"role": "user", "content": message})
24
 
25
+ # Concatenate all into a single prompt for WitnessRZero
26
+ prompt = ""
27
+ for m in messages:
28
+ prompt += f"{m['role'].capitalize()}: {m['content']}\n"
29
+
30
+ response = ""
31
+ # Stream the output from WitnessRZero.generate()
32
+ for token in wrz.client.text_generation(
33
+ prompt,
34
+ max_new_tokens=max_tokens,
35
+ stream=True,
36
+ temperature=temperature,
37
+ top_p=top_p,
38
+ ):
39
+ part = token # huggingface_hub’s stream yields token text chunks
40
+ response += part
41
+ yield response
42
+
43
+ # Build the Gradio ChatInterface
 
 
 
 
 
 
 
 
 
 
 
 
 
44
  demo = gr.ChatInterface(
45
  respond,
46
  additional_inputs=[
47
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
48
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
49
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
50
+ gr.Slider(
51
+ minimum=0.1,
52
+ maximum=1.0,
53
+ value=0.95,
54
+ step=0.05,
55
+ label="Top-p (nucleus sampling)",
56
+ ),
57
  ],
58
  )
59
 
 
61
  demo.launch()
62
 
63
 
64
+