# --- Imports --- import os import sys import cv2 import torch import gradio as gr import numpy as np from PIL import Image, ImageOps import io import base64 import traceback import tempfile from fastapi import FastAPI, File, UploadFile from fastapi.middleware.cors import CORSMiddleware import spaces # Import model-specific libraries try: from basicsr.archs.srvgg_arch import SRVGGNetCompact from gfpgan.utils import GFPGANer from realesrgan.utils import RealESRGANer print("Successfully imported model libraries.") except ImportError as e: print(f"Error importing model libraries: {e}") print("Please ensure basicsr, gfpgan, realesrgan are installed") sys.exit(1) # --- Constants --- OUTPUT_DIR = 'output' os.makedirs(OUTPUT_DIR, exist_ok=True) # --- Model Weight Downloads --- MODEL_FILES = { 'realesr-general-x4v3.pth': 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth', 'GFPGANv1.2.pth': 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth', 'GFPGANv1.3.pth': 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth', 'GFPGANv1.4.pth': 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth', 'RestoreFormer.pth': 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth', } print("Downloading model weights...") for filename, url in MODEL_FILES.items(): try: if not os.path.exists(filename): print(f"Downloading {filename}...") os.system(f"wget -q {url} -P .") except Exception as e: print(f"Error downloading {filename}: {e}") # --- Sample Image Downloads --- SAMPLE_IMAGES = { 'lincoln.jpg': 'https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg', 'AI-generate.jpg': 'https://user-images.githubusercontent.com/17445847/187400315-87a90ac9-d231-45d6-b377-38702bd1838f.jpg', 'Blake_Lively.jpg': 'https://user-images.githubusercontent.com/17445847/187400981-8a58f7a4-ef61-42d9-af80-bc6234cef860.jpg', '10045.png': 'https://user-images.githubusercontent.com/17445847/187401133-8a3bf269-5b4d-4432-b2f0-6d26ee1d3307.png' } for filename, url in SAMPLE_IMAGES.items(): try: if not os.path.exists(filename): torch.hub.download_url_to_file(url, filename, progress=False) except Exception as e: print(f"Warning: Error downloading sample image {filename}: {e}") # --- Model Initialization (Background Enhancer) --- upsampler = None try: model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') model_path = 'realesr-general-x4v3.pth' half = torch.cuda.is_available() upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) except Exception as e: print(f"Error creating RealESRGAN upsampler: {e}") print(traceback.format_exc()) print("Warning: GFPGAN will run without background enhancement.") # --- Universal processing function --- @spaces.GPU(duration=90) def process_image(input_image, version, scale): """ Universal image processing function that handles multiple input types. Args: input_image: Can be either a filepath string, PIL Image, or numpy array version (str): GFPGAN model version ('v1.2', 'v1.3', 'v1.4', 'RestoreFormer') scale (float): Rescaling factor for the final output relative to original Returns: tuple: (PIL.Image.Image | None, str | None) - Output PIL image (RGB) or None on error - Base64 encoded output image string (data URI) or an error message string """ input_pil_image = None # --- Handle different input types --- try: # Case 1: Input is a file path string if isinstance(input_image, str): print(f"Loading image from filepath: {input_image}") if not os.path.exists(input_image): error_msg = f"Error: Input image filepath does not exist: '{input_image}'" print(error_msg) return None, error_msg input_pil_image = Image.open(input_image) # Case 2: Input is already a PIL Image elif isinstance(input_image, Image.Image): print("Input is already a PIL Image") input_pil_image = input_image # Case 3: Input is a numpy array (from OpenCV or other sources) elif isinstance(input_image, np.ndarray): print("Converting numpy array to PIL Image") # If it's BGR (from OpenCV), convert to RGB if input_image.shape[2] == 3: # Has 3 channels input_pil_image = Image.fromarray(cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)) else: input_pil_image = Image.fromarray(input_image) # Case 4: Input might be from Gradio (like a temporary file or numpy array) else: print(f"Unrecognized input type: {type(input_image)}") # Try to handle it as a temporary file or other Gradio-provided input if hasattr(input_image, "name") and os.path.exists(input_image.name): input_pil_image = Image.open(input_image.name) else: error_msg = f"Unsupported input type: {type(input_image)}" print(error_msg) return None, error_msg print(f"Successfully loaded image. Mode: {input_pil_image.mode}, size: {input_pil_image.size}") except Exception as load_err: error_msg = f"Error loading image: {load_err}" print(error_msg) print(traceback.format_exc()) return None, error_msg if input_pil_image is None: return None, "Error: Failed to load input image." print(f"Processing image with GFPGAN version: {version}, scale: {scale}") # --- Handle EXIF Orientation --- original_size_before_exif = input_pil_image.size try: input_pil_image = ImageOps.exif_transpose(input_pil_image) if input_pil_image.size != original_size_before_exif: print(f"Image size changed by EXIF transpose: {original_size_before_exif} -> {input_pil_image.size}") except Exception as exif_err: print(f"Warning: Could not apply EXIF transpose: {exif_err}") w_orig, h_orig = input_pil_image.size print(f"Input size for processing (WxH): {w_orig}x{h_orig}") # Convert PIL Image to OpenCV format (BGR numpy array) try: img_mode = input_pil_image.mode if img_mode != 'RGB': print(f"Converting input image from {img_mode} to RGB") input_pil_image = input_pil_image.convert('RGB') img_bgr = np.array(input_pil_image)[:, :, ::-1].copy() except Exception as conversion_err: error_msg = f"Error converting PIL image to OpenCV format: {conversion_err}" print(error_msg) return None, error_msg # --- Start GFPGAN Processing --- try: h, w = img_bgr.shape[0:2] if h > 4000 or w > 4000: print(f'Warning: Image size ({w}x{h}) is very large, processing might be slow or fail.') model_map = { 'v1.2': 'GFPGANv1.2.pth', 'v1.3': 'GFPGANv1.3.pth', 'v1.4': 'GFPGANv1.4.pth', 'RestoreFormer': 'RestoreFormer.pth' } arch_map = { 'v1.2': 'clean', 'v1.3': 'clean', 'v1.4': 'clean', 'RestoreFormer': 'RestoreFormer' } if version not in model_map: error_msg = f"Error: Unknown version selected: {version}" print(error_msg) return None, error_msg model_path = model_map[version] arch = arch_map[version] if not os.path.exists(model_path): error_msg = f"Error: Model file not found for version {version}: {model_path}" print(error_msg) return None, error_msg current_bg_upsampler = upsampler if not current_bg_upsampler: print("Warning: RealESRGAN upsampler not available. Background enhancement disabled.") face_enhancer = GFPGANer( model_path=model_path, upscale=2, arch=arch, channel_multiplier=2, bg_upsampler=current_bg_upsampler ) print(f"Running GFPGAN enhancement with {version}...") _, _, output_bgr = face_enhancer.enhance( img_bgr, has_aligned=False, only_center_face=False, paste_back=True ) if output_bgr is None: error_msg = "Error: GFPGAN enhancement returned None." print(error_msg) return None, error_msg print(f"Enhancement complete. Intermediate output shape (HxWxC BGR): {output_bgr.shape}") # --- Post-processing (Resizing) --- target_scale_factor = float(scale) h_gfpgan, w_gfpgan = output_bgr.shape[0:2] target_w = int(w_orig * target_scale_factor) target_h = int(h_orig * target_scale_factor) if target_w <= 0 or target_h <= 0: print(f"Warning: Invalid target size ({target_w}x{target_h}) calculated from scale {scale}. Using GFPGAN output size {w_gfpgan}x{h_gfpgan}.") target_w, target_h = w_gfpgan, h_gfpgan if abs(target_w - w_gfpgan) > 2 or abs(target_h - h_gfpgan) > 2: print(f"Resizing GFPGAN output ({w_gfpgan}x{h_gfpgan}) to target ({target_w}x{target_h}) based on scale {target_scale_factor}...") interpolation = cv2.INTER_LANCZOS4 if (target_w * target_h) > (w_gfpgan * h_gfpgan) else cv2.INTER_AREA try: output_bgr = cv2.resize(output_bgr, (target_w, target_h), interpolation=interpolation) except cv2.error as resize_err: error_msg = f"Error during OpenCV resize: {resize_err}. Returning image before final resize attempt." print(error_msg) output_pil = Image.fromarray(cv2.cvtColor(output_bgr, cv2.COLOR_BGR2RGB)) base64_output = None try: buffered = io.BytesIO() output_pil.save(buffered, format="WEBP", quality=85) img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") base64_output = f"data:image/webp;base64,{img_str}" except Exception as enc_err: print(f"Error encoding fallback image: {enc_err}") error_msg += f" | Encoding Error: {enc_err}" return output_pil, base64_output if base64_output else error_msg # --- Convert final result back to PIL (RGB) --- output_pil = Image.fromarray(cv2.cvtColor(output_bgr, cv2.COLOR_BGR2RGB)) print(f"Final output image size (WxH PIL): {output_pil.size}") # --- Encode final PIL image to Base64 for API --- base64_output = None try: buffered = io.BytesIO() output_pil.save(buffered, format="WEBP", quality=90) img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") base64_output = f"data:image/webp;base64,{img_str}" except Exception as enc_err: error_msg = f"Error encoding final image to base64: {enc_err}" print(error_msg) return output_pil, error_msg success_msg = f"Success! Output size: {output_pil.size[0]}x{output_pil.size[1]}" return output_pil, base64_output if base64_output else success_msg except Exception as error: error_msg = f"Error during GFPGAN processing: {error}" print(error_msg) print(traceback.format_exc()) error_img = None try: error_img = Image.new('RGB', (100, 50), color = 'red') except Exception: pass return error_img, error_msg # --- Function to handle file upload for API --- def handle_file_upload(file_data): """Save uploaded file to temporary directory and return path""" try: print(f"Handling file upload: {type(file_data)}") # Create a temporary file temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg') temp_path = temp_file.name # If it's bytes, write directly if isinstance(file_data, bytes): with open(temp_path, 'wb') as f: f.write(file_data) # If it's a file-like object (from FastAPI/Gradio) elif hasattr(file_data, 'file'): content = file_data.file.read() with open(temp_path, 'wb') as f: f.write(content) # If it's a string path, it's already saved elif isinstance(file_data, str) and os.path.exists(file_data): return file_data else: raise ValueError(f"Unsupported file data type: {type(file_data)}") print(f"File saved to temporary path: {temp_path}") return temp_path except Exception as e: print(f"Error handling file upload: {e}") print(traceback.format_exc()) raise # --- API inference function --- @spaces.GPU(duration=90) def inference(input_image, version, scale): """ API-friendly wrapper that ensures consistent behavior between web and API interfaces. """ try: # If input is a file upload (from API), save it to a temporary path if not isinstance(input_image, (str, Image.Image, np.ndarray)) and not (hasattr(input_image, 'name') and os.path.exists(input_image.name)): file_path = handle_file_upload(input_image) input_image = file_path # Process the image output_pil, base64_or_msg = process_image(input_image, version, scale) # Return the processed results return output_pil, base64_or_msg except Exception as e: print(f"Error in inference: {e}") print(traceback.format_exc()) # Return a placeholder error image and message error_img = Image.new('RGB', (100, 50), color='red') return error_img, f"Error: {str(e)}" # --- Get the FastAPI app from Gradio --- app = FastAPI() # Add CORS middleware to allow cross-origin requests app.add_middleware( CORSMiddleware, allow_origins=["*"], # Allows all origins allow_credentials=True, allow_methods=["*"], # Allows all methods allow_headers=["*"], # Allows all headers ) # --- Direct API endpoint for file upload --- @app.post("/api/direct-process") async def direct_process(file: UploadFile = File(...), version: str = "v1.4", scale: float = 2.0): try: # Save the uploaded file temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg') temp_path = temp_file.name with open(temp_path, 'wb') as f: f.write(await file.read()) # Process the image _, base64_image = process_image(temp_path, version, scale) # Clean up os.unlink(temp_path) # Return base64 image data if base64_image and base64_image.startswith('data:image'): return {"success": True, "image": base64_image} else: return {"success": False, "error": base64_image or "Unknown error"} except Exception as e: print(f"Error in direct-process API: {e}") print(traceback.format_exc()) return {"success": False, "error": str(e)} # --- Gradio Interface Definition --- title = "GFPGAN: Practical Face Restoration" description = """Gradio demo for GFPGAN: Towards Real-World Blind Face Restoration with Generative Facial Prior.
Restore your old photos or improve AI-generated faces. Upload an image to start.
If helpful, please ⭐ the Original Github Repo.
API endpoint available at `/predict` or `/api/direct-process`. Returns processed image and base64 data. """ article = "Questions? Contact the original creators (see GFPGAN repo)." # Use upload component for more compatibility inputs = [ gr.Image(type="pil", label="Input Image", sources=["upload", "clipboard"]), gr.Radio( ['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'], type="value", value='v1.4', label='GFPGAN Version', info="v1.4 recommended. RestoreFormer for diverse poses." ), gr.Number( label="Rescaling Factor", value=2, info="Final output size multiplier relative to original input size (e.g., 2 = 2x original WxH)." ), ] outputs = [ gr.Image(type="pil", label="Output Image"), gr.Textbox(label="Output Info / Base64 Data", interactive=False, visible=True) ] examples = [ ['AI-generate.jpg', 'v1.4', 2], ['lincoln.jpg', 'v1.4', 2], ['Blake_Lively.jpg', 'v1.4', 2], ['10045.png', 'v1.4', 2] ] # --- Gradio Interface Instantiation --- demo = gr.Interface( fn=inference, inputs=inputs, outputs=outputs, title=title, description=description, article=article, examples=examples, cache_examples=False, allow_flagging='never' ) # Mount the Gradio app app = gr.mount_gradio_app(app, demo, path="/") # Launch the interface if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=7860)