Spaces:
Running
Running
| import os | |
| import copy | |
| import khandy | |
| import numpy as np | |
| from .base import OnnxModel | |
| from collections import OrderedDict | |
| from .base import check_image_dtype_and_shape | |
| from utils import MODEL_DIR | |
| class InsectIdentifier(OnnxModel): | |
| def __init__(self): | |
| model_path = f"{MODEL_DIR}/quarrying_insect_identifier.onnx" | |
| label_map_path = f"{MODEL_DIR}/quarrying_insectid_label_map.txt" | |
| super(InsectIdentifier, self).__init__(model_path) | |
| self.label_name_dict = self._get_label_name_dict(label_map_path) | |
| self.names = [ | |
| self.label_name_dict[i]["chinese_name"] | |
| for i in range(len(self.label_name_dict)) | |
| ] | |
| self.num_classes = len(self.label_name_dict) | |
| def _get_label_name_dict(filename): | |
| records = khandy.load_list(filename) | |
| label_name_dict = {} | |
| for record in records: | |
| label, chinese_name, latin_name = record.split(",") | |
| label_name_dict[int(label)] = OrderedDict( | |
| [("chinese_name", chinese_name), ("latin_name", latin_name)] | |
| ) | |
| return label_name_dict | |
| def _preprocess(image): | |
| check_image_dtype_and_shape(image) | |
| # image size normalization | |
| image = khandy.letterbox_image(image, 224, 224) | |
| # image channel normalization | |
| image = khandy.normalize_image_channel(image, swap_rb=True) | |
| # image dtype normalization | |
| # image dtype and value range normalization | |
| mean, stddev = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] | |
| image = khandy.normalize_image_value(image, mean, stddev, "auto") | |
| # to tensor | |
| image = np.transpose(image, (2, 0, 1)) | |
| image = np.expand_dims(image, axis=0) | |
| return image | |
| def predict(self, image): | |
| inputs = self._preprocess(image) | |
| logits = self.forward(inputs) | |
| probs = khandy.softmax(logits) | |
| return probs | |
| def identify(self, image, topk=5): | |
| assert isinstance(topk, int) | |
| if topk <= 0 or topk > self.num_classes: | |
| topk = self.num_classes | |
| probs = self.predict(image) | |
| topk_probs, topk_indices = khandy.top_k(probs, topk) | |
| results = [] | |
| for ind, prob in zip(topk_indices[0], topk_probs[0]): | |
| one_result = copy.deepcopy(self.label_name_dict[ind]) | |
| one_result["probability"] = prob | |
| results.append(one_result) | |
| return results | |