|
import os |
|
import re |
|
import random |
|
from dataclasses import dataclass |
|
from functools import partial |
|
|
|
import torch |
|
import gradio as gr |
|
import spaces |
|
from datasets import load_dataset |
|
from torch.utils.data import DataLoader |
|
from transformers import AutoProcessor, Gemma3ForConditionalGeneration |
|
from PIL import Image, ImageDraw |
|
|
|
|
|
|
|
@dataclass |
|
class Configuration: |
|
dataset_id: str = "ariG23498/license-detection-paligemma" |
|
model_id: str = "google/gemma-3-4b-pt" |
|
checkpoint_id: str = "ariG23498/gemma-3-4b-pt-object-detection" |
|
device: str = "cuda" if torch.cuda.is_available() else "cpu" |
|
dtype: torch.dtype = torch.bfloat16 |
|
batch_size: int = 4 |
|
learning_rate: float = 2e-05 |
|
epochs: int = 1 |
|
|
|
|
|
|
|
def parse_paligemma_label(label, width, height): |
|
|
|
loc_pattern = r"<loc(\d{4})>" |
|
locations = [int(loc) for loc in re.findall(loc_pattern, label)] |
|
|
|
|
|
category = label.split(">")[-1].strip() |
|
|
|
|
|
y1_norm, x1_norm, y2_norm, x2_norm = locations |
|
|
|
|
|
x1 = (x1_norm / 1024) * width |
|
y1 = (y1_norm / 1024) * height |
|
x2 = (x2_norm / 1024) * width |
|
y2 = (y2_norm / 1024) * height |
|
|
|
return category, [x1, y1, x2, y2] |
|
|
|
|
|
def visualize_bounding_boxes(image, label, width, height): |
|
|
|
draw_image = image.copy() |
|
draw = ImageDraw.Draw(draw_image) |
|
|
|
category, bbox = parse_paligemma_label(label, width, height) |
|
|
|
draw.rectangle(bbox, outline="red", width=2) |
|
draw.text((bbox[0], max(0, bbox[1] - 10)), category, fill="red") |
|
|
|
return draw_image |
|
|
|
|
|
def test_collate_function(batch_of_samples, processor, dtype): |
|
images = [] |
|
prompts = [] |
|
for sample in batch_of_samples: |
|
images.append([sample["image"]]) |
|
prompts.append(f"{processor.tokenizer.boi_token} detect \n\n") |
|
|
|
batch = processor(images=images, text=prompts, return_tensors="pt", padding=True) |
|
batch["pixel_values"] = batch["pixel_values"].to(dtype) |
|
return batch, images |
|
|
|
|
|
|
|
cfg = Configuration() |
|
|
|
processor = AutoProcessor.from_pretrained(cfg.checkpoint_id) |
|
model = Gemma3ForConditionalGeneration.from_pretrained( |
|
cfg.checkpoint_id, |
|
torch_dtype=cfg.dtype, |
|
device_map="cpu", |
|
) |
|
model.eval() |
|
|
|
test_dataset = load_dataset(cfg.dataset_id, split="test") |
|
|
|
|
|
def get_sample(): |
|
sample = random.choice(test_dataset) |
|
images = [[sample["image"]]] |
|
prompts = [f"{processor.tokenizer.boi_token} detect \n\n"] |
|
|
|
batch = processor(images=images, text=prompts, return_tensors="pt", padding=True) |
|
batch["pixel_values"] = batch["pixel_values"].to(cfg.dtype) |
|
|
|
return batch, sample["image"] |
|
|
|
|
|
|
|
@spaces.GPU |
|
def run_prediction(): |
|
model.to(cfg.device) |
|
|
|
batch, raw_image = get_sample() |
|
batch = {k: v.to(cfg.device) if isinstance(v, torch.Tensor) else v for k, v in batch.items()} |
|
|
|
with torch.no_grad(): |
|
generation = model.generate(**batch, max_new_tokens=100) |
|
decoded = processor.batch_decode(generation, skip_special_tokens=True)[0] |
|
|
|
image = raw_image |
|
width, height = image.size |
|
|
|
result_image = visualize_bounding_boxes(image, decoded, width, height) |
|
return result_image |
|
|
|
|
|
|
|
demo = gr.Interface( |
|
fn=run_prediction, |
|
inputs=[], |
|
outputs=gr.Image(type="pil", label="Detected Bounding Box"), |
|
title="Gemma3 Object Detector", |
|
description="Click 'Generate' to visualize a prediction from a randomly sampled test image.", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|