Steelfreak commited on
Commit
6f575c5
·
verified ·
1 Parent(s): f848b3e

Update README.md

Browse files

Added info to the read me page

Files changed (1) hide show
  1. README.md +125 -0
README.md CHANGED
@@ -10,3 +10,128 @@ short_description: We will be translating one language to another
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
13
+
14
+
15
+
16
+
17
+ Developing a translation model using Hugging Face involves leveraging their extensive library of pre-trained models, particularly those from the Transformers family. Here’s a step-by-step guide to creating a simple translation model:
18
+
19
+ Step 1: Install the Transformers Library
20
+ First, ensure you have the Transformers library installed. If not, you can install it using pip:
21
+
22
+ bash
23
+ pip install transformers
24
+ Step 2: Choose a Pre-Trained Model
25
+ Hugging Face provides several pre-trained models for translation tasks. One popular choice is the t5-base model, which is versatile and can be fine-tuned for various translation tasks. However, for direct translation, models like Helsinki-NLP/opus-mt-en-fr are more suitable.
26
+
27
+ Step 3: Load the Model and Tokenizer
28
+ You can use the pipeline() function to load a pre-trained model for translation. Here’s how you can do it:
29
+
30
+ python
31
+ from transformers import pipeline
32
+
33
+ # Load a pre-trained translation model
34
+ translator = pipeline("translation_en_to_fr", model="Helsinki-NLP/opus-mt-en-fr")
35
+
36
+ # Example text to translate
37
+ text = "Hello, how are you?"
38
+
39
+ # Translate the text
40
+ result = translator(text)
41
+
42
+ # Print the translation
43
+ print(result)
44
+ Step 4: Fine-Tune the Model (Optional)
45
+ If you want to improve the model's performance on a specific dataset or domain, you can fine-tune it. This involves loading the model and tokenizer, preparing your dataset, and then training the model on your data.
46
+
47
+ Here’s a simplified example of fine-tuning a translation model:
48
+
49
+ python
50
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
51
+ from torch.utils.data import Dataset, DataLoader
52
+ import torch
53
+
54
+ # Load pre-trained model and tokenizer
55
+ model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-fr")
56
+ tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-fr")
57
+
58
+ # Example dataset class
59
+ class TranslationDataset(Dataset):
60
+ def __init__(self, data, tokenizer):
61
+ self.data = data
62
+ self.tokenizer = tokenizer
63
+
64
+ def __len__(self):
65
+ return len(self.data)
66
+
67
+ def __getitem__(self, idx):
68
+ source_text, target_text = self.data[idx]
69
+ source_ids = self.tokenizer.encode(source_text, return_tensors="pt")
70
+ target_ids = self.tokenizer.encode(target_text, return_tensors="pt")
71
+
72
+ return {
73
+ "input_ids": source_ids,
74
+ "labels": target_ids,
75
+ }
76
+
77
+ # Example data
78
+ data = [
79
+ ("Hello, how are you?", "Bonjour, comment vas-tu?"),
80
+ # Add more data here...
81
+ ]
82
+
83
+ # Create dataset and data loader
84
+ dataset = TranslationDataset(data, tokenizer)
85
+ batch_size = 16
86
+ data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
87
+
88
+ # Training loop
89
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
90
+ model.to(device)
91
+
92
+ for epoch in range(5): # Number of epochs
93
+ model.train()
94
+ for batch in data_loader:
95
+ input_ids = batch["input_ids"].to(device)
96
+ labels = batch["labels"].to(device)
97
+
98
+ # Zero the gradients
99
+ optimizer = torch.optim.Adam(model.parameters(), lr=1e-5)
100
+ optimizer.zero_grad()
101
+
102
+ # Forward pass
103
+ outputs = model(input_ids, labels=labels)
104
+ loss = outputs.loss
105
+
106
+ # Backward pass
107
+ loss.backward()
108
+
109
+ # Update model parameters
110
+ optimizer.step()
111
+
112
+ print(f"Epoch {epoch+1}, Loss: {loss.item()}")
113
+
114
+ # Save the fine-tuned model
115
+ model.save_pretrained("fine_tuned_model")
116
+ tokenizer.save_pretrained("fine_tuned_model")
117
+ Step 5: Use the Fine-Tuned Model for Translation
118
+ After fine-tuning, you can use the model for translating text:
119
+
120
+ python
121
+ # Load the fine-tuned model and tokenizer
122
+ fine_tuned_model = AutoModelForSeq2SeqLM.from_pretrained("fine_tuned_model")
123
+ fine_tuned_tokenizer = AutoTokenizer.from_pretrained("fine_tuned_model")
124
+
125
+ # Create a translation pipeline
126
+ def translate_text(text):
127
+ input_ids = fine_tuned_tokenizer.encode(text, return_tensors="pt")
128
+ output = fine_tuned_model.generate(input_ids)
129
+ return fine_tuned_tokenizer.decode(output[0], skip_special_tokens=True)
130
+
131
+ # Example translation
132
+ text = "Hello, how are you?"
133
+ translation = translate_text(text)
134
+ print(translation)
135
+ This guide provides a basic overview of creating a translation model using Hugging Face. Depending on your specific needs, you might need to adjust the model choice, dataset preparation, and training parameters.
136
+
137
+