GreenGoat commited on
Commit
055eaca
·
verified ·
1 Parent(s): 1d03387

Upload 4 files

Browse files
Files changed (4) hide show
  1. README.md +111 -5
  2. app.py +430 -22
  3. briarmbg.py +176 -0
  4. requirements.txt +12 -8
README.md CHANGED
@@ -1,12 +1,118 @@
1
  ---
2
- title: IClight Demo
3
- emoji:
4
  colorFrom: blue
5
- colorTo: blue
6
  sdk: gradio
7
- sdk_version: 5.31.0
8
  app_file: app.py
9
  pinned: false
 
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: IC-Light Background Conditional Relighting Demo
3
+ emoji:
4
  colorFrom: blue
5
+ colorTo: purple
6
  sdk: gradio
7
+ sdk_version: 3.41.2
8
  app_file: app.py
9
  pinned: false
10
+ license: apache-2.0
11
  ---
12
 
13
+ # IC-Light Background Conditional Relighting Demo
14
+
15
+ 这是一个基于IC-Light的背景条件重新打光演示应用,适用于Hugging Face Spaces。
16
+
17
+ ## 功能特性
18
+
19
+ - **背景条件重新打光**: 使用前景图像和背景图像进行智能重新打光
20
+ - **多种光照模式**: 支持上传背景图像或选择预设光照方向(左、右、上、下、环境光)
21
+ - **自动背景移除**: 自动移除前景图像的背景
22
+ - **高分辨率支持**: 支持高分辨率图像生成和细化
23
+ - **实时预览**: 快速生成预览结果
24
+
25
+ ## 使用方法
26
+
27
+ ### 基本使用
28
+
29
+ 1. **上传前景图像**: 上传包含人物或物体的图像
30
+ 2. **选择背景源**:
31
+ - `Use Background Image`: 上传自定义背景图像
32
+ - `Left Light/Right Light/Top Light/Bottom Light`: 使用预设的方向性光照
33
+ - `Ambient`: 使用环境光照
34
+ 3. **输入提示词**: 描述期望的光照效果,如 "beautiful woman, cinematic lighting"
35
+ 4. **点击"✨ Relight Image"**: 生成重新打光的结果
36
+
37
+ ### 高级设置
38
+
39
+ - **图像尺寸**: 调整输出图像的宽度和高度
40
+ - **生成步数**: 控制生成质量(更多步数 = 更高质量,但更慢)
41
+ - **CFG Scale**: 控制提示词的影响强度
42
+ - **高分辨率缩放**: 启用高分辨率细化
43
+ - **种子值**: 控制随机性,相同种子产生相同结果
44
+
45
+ ## 技术实现
46
+
47
+ ### 模型架构
48
+
49
+ - **基础模型**: Stable Diffusion 1.5 (realistic-vision-v51)
50
+ - **IC-Light权重**: iclight_sd15_fbc.safetensors (背景条件模型)
51
+ - **背景移除**: RMBG-1.4 或简化的边缘检测算法
52
+
53
+ ### 核心功能
54
+
55
+ 1. **UNet修改**: 将输入通道从4扩展到12,以支持前景和背景条件
56
+ 2. **条件编码**: 将前景和背景图像编码为潜在空间条件
57
+ 3. **提示词编码**: 支持长提示词的分块编码
58
+ 4. **多阶段生成**: 支持低分辨率生成 + 高分辨率细化
59
+
60
+ ## 依赖项
61
+
62
+ ```
63
+ diffusers==0.27.2
64
+ transformers==4.36.2
65
+ torch
66
+ gradio==3.41.2
67
+ pillow==10.2.0
68
+ safetensors
69
+ numpy
70
+ scipy
71
+ ```
72
+
73
+ ## 部署到Hugging Face Spaces
74
+
75
+ 1. 创建新的Gradio Space
76
+ 2. 上传所有文件到Space
77
+ 3. 确保requirements.txt包含所有依赖
78
+ 4. Space会自动构建和部署
79
+
80
+ ## 示例用法
81
+
82
+ ### 人像重新打光
83
+ ```
84
+ 前景: 人像照片
85
+ 背景: 选择"Left Light"
86
+ 提示词: "beautiful woman, cinematic lighting"
87
+ ```
88
+
89
+ ### 产品摄影
90
+ ```
91
+ 前景: 产品图片
92
+ 背景: 上传工作室背景
93
+ 提示词: "product photography, professional lighting"
94
+ ```
95
+
96
+ ### 艺术创作
97
+ ```
98
+ 前景: 任意物体
99
+ 背景: 选择"Top Light"
100
+ 提示词: "dramatic lighting, artistic photography"
101
+ ```
102
+
103
+ ## 注意事项
104
+
105
+ - 首次运行会下载IC-Light模型文件(约2GB)
106
+ - GPU环境下运行效果最佳
107
+ - 背景移除功能可能需要手动调整
108
+ - 生成时间取决于图像尺寸和步数设置
109
+
110
+ ## 许可证
111
+
112
+ 本项目基于IC-Light官方实现,遵循相应的开源许可证。
113
+
114
+ ## 相关链接
115
+
116
+ - [IC-Light官方仓库](https://github.com/lllyasviel/IC-Light)
117
+ - [IC-Light论文](https://openreview.net/forum?id=u1cQYxRI1H)
118
+ - [Hugging Face Spaces](https://huggingface.co/spaces)
app.py CHANGED
@@ -1,28 +1,436 @@
1
-
 
2
  import gradio as gr
3
- from PIL import Image
4
  import torch
5
- from ic_light.infer import infer_ic_light # 假设IC-Light提供一个infer方法
6
 
7
- def run_ic_light(foreground_img, background_img, model_type="fbc+fc"):
8
- result = infer_ic_light(
9
- foreground_path=foreground_img.name,
10
- background_path=background_img.name,
11
- model_type=model_type
12
- )
13
- return Image.open(result)
14
-
15
- iface = gr.Interface(
16
- fn=run_ic_light,
17
- inputs=[
18
- gr.Image(type="file", label="Foreground Image"),
19
- gr.Image(type="file", label="Background Image"),
20
- gr.Radio(choices=["fc", "fbc", "fbc+fc"], label="Model Type", value="fbc+fc")
21
- ],
22
- outputs=gr.Image(label="Relit Image"),
23
- title="IC-Light Background Conditional Relighting",
24
- description="Upload a foreground and a background image to perform IC-Light based relighting using background conditions."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  )
26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  if __name__ == "__main__":
28
- iface.launch()
 
 
 
 
 
 
 
 
1
+ import os
2
+ import math
3
  import gradio as gr
4
+ import numpy as np
5
  import torch
6
+ import safetensors.torch as sf
7
 
8
+ from PIL import Image
9
+ from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
10
+ from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler
11
+ from diffusers.models.attention_processor import AttnProcessor2_0
12
+ from transformers import CLIPTextModel, CLIPTokenizer
13
+ from enum import Enum
14
+ from torch.hub import download_url_to_file
15
+ import torch.nn as nn
16
+ import torch.nn.functional as F
17
+ from huggingface_hub import PyTorchModelHubMixin
18
+
19
+ # Try to import RMBG, fallback to local implementation
20
+ try:
21
+ from transformers import pipeline
22
+ rmbg_pipeline = pipeline("image-segmentation", model="briaai/RMBG-1.4")
23
+ USE_RMBG_PIPELINE = True
24
+ except Exception as e:
25
+ print(f"Failed to load RMBG pipeline: {e}")
26
+ USE_RMBG_PIPELINE = False
27
+ try:
28
+ from briarmbg import BriaRMBG, simple_background_removal
29
+ except:
30
+ # Inline simple background removal
31
+ def simple_background_removal(image):
32
+ if isinstance(image, np.ndarray):
33
+ img = image
34
+ else:
35
+ img = np.array(image)
36
+
37
+ # Simple fallback - return full mask
38
+ gray = np.mean(img, axis=2)
39
+ mask = np.ones_like(gray)
40
+ return mask
41
+
42
+ # Model setup
43
+ sd15_name = 'stablediffusionapi/realistic-vision-v51'
44
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
45
+
46
+ print(f"Using device: {device}")
47
+ print("Loading models...")
48
+
49
+ # Initialize models
50
+ tokenizer = CLIPTokenizer.from_pretrained(sd15_name, subfolder="tokenizer")
51
+ text_encoder = CLIPTextModel.from_pretrained(sd15_name, subfolder="text_encoder")
52
+ vae = AutoencoderKL.from_pretrained(sd15_name, subfolder="vae")
53
+ unet = UNet2DConditionModel.from_pretrained(sd15_name, subfolder="unet")
54
+
55
+ # Modify UNet for IC-Light
56
+ with torch.no_grad():
57
+ new_conv_in = torch.nn.Conv2d(12, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding)
58
+ new_conv_in.weight.zero_()
59
+ new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight)
60
+ new_conv_in.bias = unet.conv_in.bias
61
+ unet.conv_in = new_conv_in
62
+
63
+ unet_original_forward = unet.forward
64
+
65
+ def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs):
66
+ c_concat = kwargs['cross_attention_kwargs']['concat_conds'].to(sample)
67
+ c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0)
68
+ new_sample = torch.cat([sample, c_concat], dim=1)
69
+ kwargs['cross_attention_kwargs'] = {}
70
+ return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs)
71
+
72
+ unet.forward = hooked_unet_forward
73
+
74
+ # Load IC-Light weights
75
+ model_path = './iclight_sd15_fbc.safetensors'
76
+ if not os.path.exists(model_path):
77
+ print("Downloading IC-Light model...")
78
+ download_url_to_file(url='https://huggingface.co/lllyasviel/ic-light/resolve/main/iclight_sd15_fbc.safetensors', dst=model_path)
79
+
80
+ sd_offset = sf.load_file(model_path)
81
+ sd_origin = unet.state_dict()
82
+ sd_merged = {k: sd_origin[k] + sd_offset[k] for k in sd_origin.keys()}
83
+ unet.load_state_dict(sd_merged, strict=True)
84
+ del sd_offset, sd_origin, sd_merged
85
+
86
+ # Move models to device
87
+ text_encoder = text_encoder.to(device=device, dtype=torch.float16)
88
+ vae = vae.to(device=device, dtype=torch.bfloat16)
89
+ unet = unet.to(device=device, dtype=torch.float16)
90
+
91
+ # Set attention processors
92
+ unet.set_attn_processor(AttnProcessor2_0())
93
+ vae.set_attn_processor(AttnProcessor2_0())
94
+
95
+ # Scheduler
96
+ scheduler = DPMSolverMultistepScheduler(
97
+ num_train_timesteps=1000,
98
+ beta_start=0.00085,
99
+ beta_end=0.012,
100
+ algorithm_type="sde-dpmsolver++",
101
+ use_karras_sigmas=True,
102
+ steps_offset=1
103
+ )
104
+
105
+ # Pipelines
106
+ t2i_pipe = StableDiffusionPipeline(
107
+ vae=vae,
108
+ text_encoder=text_encoder,
109
+ tokenizer=tokenizer,
110
+ unet=unet,
111
+ scheduler=scheduler,
112
+ safety_checker=None,
113
+ requires_safety_checker=False,
114
+ feature_extractor=None,
115
+ image_encoder=None
116
+ )
117
+
118
+ i2i_pipe = StableDiffusionImg2ImgPipeline(
119
+ vae=vae,
120
+ text_encoder=text_encoder,
121
+ tokenizer=tokenizer,
122
+ unet=unet,
123
+ scheduler=scheduler,
124
+ safety_checker=None,
125
+ requires_safety_checker=False,
126
+ feature_extractor=None,
127
+ image_encoder=None
128
  )
129
 
130
+ print("Models loaded successfully!")
131
+
132
+ @torch.inference_mode()
133
+ def encode_prompt_inner(txt: str):
134
+ max_length = tokenizer.model_max_length
135
+ chunk_length = tokenizer.model_max_length - 2
136
+ id_start = tokenizer.bos_token_id
137
+ id_end = tokenizer.eos_token_id
138
+ id_pad = id_end
139
+
140
+ def pad(x, p, i):
141
+ return x[:i] if len(x) >= i else x + [p] * (i - len(x))
142
+
143
+ tokens = tokenizer(txt, truncation=False, add_special_tokens=False)["input_ids"]
144
+ chunks = [[id_start] + tokens[i: i + chunk_length] + [id_end] for i in range(0, len(tokens), chunk_length)]
145
+ chunks = [pad(ck, id_pad, max_length) for ck in chunks]
146
+
147
+ token_ids = torch.tensor(chunks).to(device=device, dtype=torch.int64)
148
+ conds = text_encoder(token_ids).last_hidden_state
149
+
150
+ return conds
151
+
152
+ @torch.inference_mode()
153
+ def encode_prompt_pair(positive_prompt, negative_prompt):
154
+ c = encode_prompt_inner(positive_prompt)
155
+ uc = encode_prompt_inner(negative_prompt)
156
+
157
+ c_len = float(len(c))
158
+ uc_len = float(len(uc))
159
+ max_count = max(c_len, uc_len)
160
+ c_repeat = int(math.ceil(max_count / c_len))
161
+ uc_repeat = int(math.ceil(max_count / uc_len))
162
+ max_chunk = max(len(c), len(uc))
163
+
164
+ c = torch.cat([c] * c_repeat, dim=0)[:max_chunk]
165
+ uc = torch.cat([uc] * uc_repeat, dim=0)[:max_chunk]
166
+
167
+ c = torch.cat([p[None, ...] for p in c], dim=1)
168
+ uc = torch.cat([p[None, ...] for p in uc], dim=1)
169
+
170
+ return c, uc
171
+
172
+ @torch.inference_mode()
173
+ def pytorch2numpy(imgs, quant=True):
174
+ results = []
175
+ for x in imgs:
176
+ y = x.movedim(0, -1)
177
+ if quant:
178
+ y = y * 127.5 + 127.5
179
+ y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
180
+ else:
181
+ y = y * 0.5 + 0.5
182
+ y = y.detach().float().cpu().numpy().clip(0, 1).astype(np.float32)
183
+ results.append(y)
184
+ return results
185
+
186
+ @torch.inference_mode()
187
+ def numpy2pytorch(imgs):
188
+ h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.0 - 1.0
189
+ h = h.movedim(-1, 1)
190
+ return h
191
+
192
+ def resize_and_center_crop(image, target_width, target_height):
193
+ pil_image = Image.fromarray(image)
194
+ original_width, original_height = pil_image.size
195
+ scale_factor = max(target_width / original_width, target_height / original_height)
196
+ new_width = int(original_width * scale_factor)
197
+ new_height = int(original_height * scale_factor)
198
+ pil_image = pil_image.resize((new_width, new_height), Image.LANCZOS)
199
+ left = (new_width - target_width) / 2
200
+ top = (new_height - target_height) / 2
201
+ right = (new_width + target_width) / 2
202
+ bottom = (new_height + target_height) / 2
203
+ pil_image = pil_image.crop((left, top, right, bottom))
204
+ return np.array(pil_image)
205
+
206
+ def resize_without_crop(image, target_width, target_height):
207
+ pil_image = Image.fromarray(image)
208
+ pil_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
209
+ return np.array(pil_image)
210
+
211
+ @torch.inference_mode()
212
+ def run_rmbg(img, sigma=0.0):
213
+ # Simplified background removal
214
+ if USE_RMBG_PIPELINE:
215
+ # Using transformers pipeline
216
+ try:
217
+ result = rmbg_pipeline(Image.fromarray(img))
218
+ mask = np.array(result['mask'])
219
+ if len(mask.shape) == 3:
220
+ mask = mask[:, :, 0]
221
+ mask = mask.astype(np.float32) / 255.0
222
+ except Exception as e:
223
+ print(f"RMBG pipeline failed: {e}, using fallback")
224
+ mask = simple_background_removal(img)
225
+ else:
226
+ # Using simple background removal
227
+ mask = simple_background_removal(img)
228
+
229
+ # Apply sigma smoothing
230
+ if sigma > 0:
231
+ try:
232
+ from scipy import ndimage
233
+ mask = ndimage.gaussian_filter(mask, sigma=sigma)
234
+ except ImportError:
235
+ # Fallback if scipy is not available
236
+ pass
237
+
238
+ # Create RGBA output
239
+ result = np.dstack((img, (mask * 255).astype(np.uint8)))
240
+ return img, mask
241
+
242
+ class BGSource(Enum):
243
+ UPLOAD = "Use Background Image"
244
+ UPLOAD_FLIP = "Use Flipped Background Image"
245
+ LEFT = "Left Light"
246
+ RIGHT = "Right Light"
247
+ TOP = "Top Light"
248
+ BOTTOM = "Bottom Light"
249
+ GREY = "Ambient"
250
+
251
+ @torch.inference_mode()
252
+ def process(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source):
253
+ bg_source = BGSource(bg_source)
254
+
255
+ if bg_source == BGSource.UPLOAD:
256
+ pass
257
+ elif bg_source == BGSource.UPLOAD_FLIP:
258
+ input_bg = np.fliplr(input_bg)
259
+ elif bg_source == BGSource.GREY:
260
+ input_bg = np.zeros(shape=(image_height, image_width, 3), dtype=np.uint8) + 64
261
+ elif bg_source == BGSource.LEFT:
262
+ gradient = np.linspace(224, 32, image_width)
263
+ image = np.tile(gradient, (image_height, 1))
264
+ input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
265
+ elif bg_source == BGSource.RIGHT:
266
+ gradient = np.linspace(32, 224, image_width)
267
+ image = np.tile(gradient, (image_height, 1))
268
+ input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
269
+ elif bg_source == BGSource.TOP:
270
+ gradient = np.linspace(224, 32, image_height)[:, None]
271
+ image = np.tile(gradient, (1, image_width))
272
+ input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
273
+ elif bg_source == BGSource.BOTTOM:
274
+ gradient = np.linspace(32, 224, image_height)[:, None]
275
+ image = np.tile(gradient, (1, image_width))
276
+ input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
277
+ else:
278
+ raise ValueError('Wrong background source!')
279
+
280
+ rng = torch.Generator(device=device).manual_seed(seed)
281
+
282
+ fg = resize_and_center_crop(input_fg, image_width, image_height)
283
+ bg = resize_and_center_crop(input_bg, image_width, image_height)
284
+ concat_conds = numpy2pytorch([fg, bg]).to(device=vae.device, dtype=vae.dtype)
285
+ concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
286
+ concat_conds = torch.cat([c[None, ...] for c in concat_conds], dim=1)
287
+
288
+ conds, unconds = encode_prompt_pair(positive_prompt=prompt + ', ' + a_prompt, negative_prompt=n_prompt)
289
+
290
+ latents = t2i_pipe(
291
+ prompt_embeds=conds,
292
+ negative_prompt_embeds=unconds,
293
+ width=image_width,
294
+ height=image_height,
295
+ num_inference_steps=steps,
296
+ num_images_per_prompt=num_samples,
297
+ generator=rng,
298
+ output_type='latent',
299
+ guidance_scale=cfg,
300
+ cross_attention_kwargs={'concat_conds': concat_conds},
301
+ ).images.to(vae.dtype) / vae.config.scaling_factor
302
+
303
+ pixels = vae.decode(latents).sample
304
+ pixels = pytorch2numpy(pixels)
305
+
306
+ if highres_scale > 1.0:
307
+ pixels = [resize_without_crop(
308
+ image=p,
309
+ target_width=int(round(image_width * highres_scale / 64.0) * 64),
310
+ target_height=int(round(image_height * highres_scale / 64.0) * 64))
311
+ for p in pixels]
312
+
313
+ pixels = numpy2pytorch(pixels).to(device=vae.device, dtype=vae.dtype)
314
+ latents = vae.encode(pixels).latent_dist.mode() * vae.config.scaling_factor
315
+ latents = latents.to(device=unet.device, dtype=unet.dtype)
316
+
317
+ image_height, image_width = latents.shape[2] * 8, latents.shape[3] * 8
318
+ fg = resize_and_center_crop(input_fg, image_width, image_height)
319
+ bg = resize_and_center_crop(input_bg, image_width, image_height)
320
+ concat_conds = numpy2pytorch([fg, bg]).to(device=vae.device, dtype=vae.dtype)
321
+ concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
322
+ concat_conds = torch.cat([c[None, ...] for c in concat_conds], dim=1)
323
+
324
+ latents = i2i_pipe(
325
+ image=latents,
326
+ strength=highres_denoise,
327
+ prompt_embeds=conds,
328
+ negative_prompt_embeds=unconds,
329
+ width=image_width,
330
+ height=image_height,
331
+ num_inference_steps=int(round(steps / highres_denoise)),
332
+ num_images_per_prompt=num_samples,
333
+ generator=rng,
334
+ output_type='latent',
335
+ guidance_scale=cfg,
336
+ cross_attention_kwargs={'concat_conds': concat_conds},
337
+ ).images.to(vae.dtype) / vae.config.scaling_factor
338
+
339
+ pixels = vae.decode(latents).sample
340
+ pixels = pytorch2numpy(pixels, quant=False)
341
+
342
+ return pixels, [fg, bg]
343
+
344
+ @torch.inference_mode()
345
+ def process_relight(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source):
346
+ input_fg, matting = run_rmbg(input_fg)
347
+ results, extra_images = process(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source)
348
+ results = [(x * 255.0).clip(0, 255).astype(np.uint8) for x in results]
349
+ return results + extra_images
350
+
351
+ # Quick prompts for easy testing
352
+ quick_prompts = [
353
+ 'beautiful woman, cinematic lighting',
354
+ 'handsome man, cinematic lighting',
355
+ 'beautiful woman, natural lighting',
356
+ 'handsome man, natural lighting',
357
+ 'beautiful woman, neo punk lighting, cyberpunk',
358
+ 'handsome man, neo punk lighting, cyberpunk',
359
+ ]
360
+ quick_prompts = [[x] for x in quick_prompts]
361
+
362
+ # Gradio Interface
363
+ def create_demo():
364
+ with gr.Blocks(title="IC-Light Background Conditional Relighting") as demo:
365
+ gr.Markdown("## IC-Light: Relighting with Foreground and Background Condition")
366
+ gr.Markdown("Upload a foreground image and background image (or choose lighting direction) to perform relighting.")
367
+
368
+ with gr.Row():
369
+ with gr.Column():
370
+ with gr.Row():
371
+ input_fg = gr.Image(source='upload', type="numpy", label="Foreground Image", height=400)
372
+ input_bg = gr.Image(source='upload', type="numpy", label="Background Image", height=400)
373
+
374
+ prompt = gr.Textbox(label="Prompt", value="beautiful woman, cinematic lighting")
375
+ bg_source = gr.Radio(
376
+ choices=[e.value for e in BGSource],
377
+ value=BGSource.UPLOAD.value,
378
+ label="Background Source"
379
+ )
380
+
381
+ example_prompts = gr.Dataset(
382
+ samples=quick_prompts,
383
+ label='Quick Prompts',
384
+ components=[prompt]
385
+ )
386
+
387
+ relight_button = gr.Button(value="✨ Relight Image", variant="primary")
388
+
389
+ with gr.Accordion("Advanced Settings", open=False):
390
+ with gr.Row():
391
+ num_samples = gr.Slider(label="Number of Images", minimum=1, maximum=4, value=1, step=1)
392
+ seed = gr.Number(label="Seed", value=12345, precision=0)
393
+ with gr.Row():
394
+ image_width = gr.Slider(label="Width", minimum=256, maximum=1024, value=512, step=64)
395
+ image_height = gr.Slider(label="Height", minimum=256, maximum=1024, value=640, step=64)
396
+ with gr.Row():
397
+ steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=20, step=1)
398
+ cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=20.0, value=7.0, step=0.1)
399
+ with gr.Row():
400
+ highres_scale = gr.Slider(label="Highres Scale", minimum=1.0, maximum=2.0, value=1.5, step=0.1)
401
+ highres_denoise = gr.Slider(label="Highres Denoise", minimum=0.1, maximum=0.9, value=0.5, step=0.1)
402
+
403
+ a_prompt = gr.Textbox(label="Additional Prompt", value='best quality')
404
+ n_prompt = gr.Textbox(label="Negative Prompt", value='lowres, bad anatomy, bad hands, cropped, worst quality')
405
+
406
+ with gr.Column():
407
+ result_gallery = gr.Gallery(label='Results', height=600, object_fit='contain')
408
+
409
+ # Event handlers
410
+ inputs = [input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source]
411
+ relight_button.click(fn=process_relight, inputs=inputs, outputs=[result_gallery])
412
+ example_prompts.click(lambda x: x[0], inputs=example_prompts, outputs=prompt, show_progress=False, queue=False)
413
+
414
+ # Examples
415
+ gr.Examples(
416
+ examples=[
417
+ ["examples/person1.jpg", "examples/bg1.jpg", "beautiful woman, cinematic lighting", "Use Background Image"],
418
+ ["examples/person2.jpg", None, "handsome man, dramatic lighting", "Left Light"],
419
+ ],
420
+ inputs=[input_fg, input_bg, prompt, bg_source],
421
+ outputs=[result_gallery],
422
+ fn=process_relight,
423
+ cache_examples=False,
424
+ )
425
+
426
+ return demo
427
+
428
  if __name__ == "__main__":
429
+ demo = create_demo()
430
+ demo.queue(max_size=20)
431
+ demo.launch(
432
+ server_name='0.0.0.0',
433
+ server_port=7860,
434
+ show_error=True,
435
+ share=False
436
+ )
briarmbg.py ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from huggingface_hub import PyTorchModelHubMixin
5
+ import numpy as np
6
+ from PIL import Image
7
+
8
+ class REBNCONV(nn.Module):
9
+ def __init__(self, in_ch=3, out_ch=3, dirate=1, stride=1):
10
+ super(REBNCONV, self).__init__()
11
+ self.conv_s1 = nn.Conv2d(
12
+ in_ch, out_ch, 3, padding=1 * dirate, dilation=1 * dirate, stride=stride
13
+ )
14
+ self.bn_s1 = nn.BatchNorm2d(out_ch)
15
+ self.relu_s1 = nn.ReLU(inplace=True)
16
+
17
+ def forward(self, x):
18
+ hx = x
19
+ xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
20
+ return xout
21
+
22
+ def _upsample_like(src, tar):
23
+ src = F.interpolate(src, size=tar.shape[2:], mode="bilinear")
24
+ return src
25
+
26
+ class RSU7(nn.Module):
27
+ def __init__(self, in_ch=3, mid_ch=12, out_ch=3, img_size=512):
28
+ super(RSU7, self).__init__()
29
+ self.in_ch = in_ch
30
+ self.mid_ch = mid_ch
31
+ self.out_ch = out_ch
32
+
33
+ self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
34
+ self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
35
+ self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
36
+ self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
37
+ self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
38
+ self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
39
+ self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
40
+ self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
41
+ self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
42
+ self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1)
43
+ self.pool5 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
44
+ self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=1)
45
+ self.rebnconv7 = REBNCONV(mid_ch, mid_ch, dirate=2)
46
+ self.rebnconv6d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
47
+ self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
48
+ self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
49
+ self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
50
+ self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
51
+ self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
52
+
53
+ def forward(self, x):
54
+ hx = x
55
+ hxin = self.rebnconvin(hx)
56
+ hx1 = self.rebnconv1(hxin)
57
+ hx = self.pool1(hx1)
58
+ hx2 = self.rebnconv2(hx)
59
+ hx = self.pool2(hx2)
60
+ hx3 = self.rebnconv3(hx)
61
+ hx = self.pool3(hx3)
62
+ hx4 = self.rebnconv4(hx)
63
+ hx = self.pool4(hx4)
64
+ hx5 = self.rebnconv5(hx)
65
+ hx = self.pool5(hx5)
66
+ hx6 = self.rebnconv6(hx)
67
+ hx7 = self.rebnconv7(hx6)
68
+ hx6d = self.rebnconv6d(torch.cat((hx7, hx6), 1))
69
+ hx6dup = _upsample_like(hx6d, hx5)
70
+ hx5d = self.rebnconv5d(torch.cat((hx6dup, hx5), 1))
71
+ hx5dup = _upsample_like(hx5d, hx4)
72
+ hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1))
73
+ hx4dup = _upsample_like(hx4d, hx3)
74
+ hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
75
+ hx3dup = _upsample_like(hx3d, hx2)
76
+ hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
77
+ hx2dup = _upsample_like(hx2d, hx1)
78
+ hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
79
+ return hx1d + hxin
80
+
81
+ class BriaRMBG(nn.Module, PyTorchModelHubMixin):
82
+ def __init__(self, config: dict = {"in_ch": 3, "out_ch": 1}):
83
+ super(BriaRMBG, self).__init__()
84
+ self.config = config
85
+ # Simplified architecture for fallback
86
+ self.stage1 = RSU7(3, 32, 64)
87
+ self.stage2 = RSU7(64, 32, 128)
88
+ self.stage3 = RSU7(128, 64, 256)
89
+ self.stage4 = RSU7(256, 128, 512)
90
+
91
+ # Decoder
92
+ self.stage4d = RSU7(1024, 128, 256)
93
+ self.stage3d = RSU7(512, 64, 128)
94
+ self.stage2d = RSU7(256, 32, 64)
95
+ self.stage1d = RSU7(128, 16, 64)
96
+
97
+ self.side1 = nn.Conv2d(64, 1, 3, padding=1)
98
+ self.side2 = nn.Conv2d(64, 1, 3, padding=1)
99
+ self.side3 = nn.Conv2d(128, 1, 3, padding=1)
100
+ self.side4 = nn.Conv2d(256, 1, 3, padding=1)
101
+ self.side5 = nn.Conv2d(512, 1, 3, padding=1)
102
+ self.side6 = nn.Conv2d(256, 1, 3, padding=1)
103
+
104
+ self.outconv = nn.Conv2d(6, 1, 1)
105
+
106
+ def forward(self, x):
107
+ hx = x
108
+
109
+ # Encoder
110
+ hx1 = self.stage1(hx)
111
+ hx = F.max_pool2d(hx1, 2, stride=2, ceil_mode=True)
112
+
113
+ hx2 = self.stage2(hx)
114
+ hx = F.max_pool2d(hx2, 2, stride=2, ceil_mode=True)
115
+
116
+ hx3 = self.stage3(hx)
117
+ hx = F.max_pool2d(hx3, 2, stride=2, ceil_mode=True)
118
+
119
+ hx4 = self.stage4(hx)
120
+ hx = F.max_pool2d(hx4, 2, stride=2, ceil_mode=True)
121
+
122
+ # Decoder
123
+ hx4d = self.stage4d(torch.cat((hx, hx4), 1))
124
+ hx4dup = _upsample_like(hx4d, hx3)
125
+
126
+ hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1))
127
+ hx3dup = _upsample_like(hx3d, hx2)
128
+
129
+ hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1))
130
+ hx2dup = _upsample_like(hx2d, hx1)
131
+
132
+ hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1))
133
+
134
+ # Side outputs
135
+ side1 = self.side1(hx1d)
136
+ side2 = _upsample_like(self.side2(hx2d), side1)
137
+ side3 = _upsample_like(self.side3(hx3d), side1)
138
+ side4 = _upsample_like(self.side4(hx4d), side1)
139
+ side5 = _upsample_like(self.side5(hx), side1)
140
+ side6 = _upsample_like(self.side6(hx4d), side1)
141
+
142
+ # Fusion
143
+ out = self.outconv(torch.cat((side1, side2, side3, side4, side5, side6), 1))
144
+
145
+ return torch.sigmoid(out)
146
+
147
+ def simple_background_removal(image):
148
+ """
149
+ Simple fallback background removal using edge detection and thresholding
150
+ """
151
+ if isinstance(image, np.ndarray):
152
+ img = image
153
+ else:
154
+ img = np.array(image)
155
+
156
+ # Convert to grayscale
157
+ gray = np.mean(img, axis=2)
158
+
159
+ # Simple edge detection
160
+ from scipy import ndimage
161
+ edges = ndimage.sobel(gray)
162
+
163
+ # Create a simple mask based on intensity
164
+ mask = np.ones_like(gray)
165
+
166
+ # Simple thresholding - assume foreground is in center and has more edges
167
+ h, w = gray.shape
168
+ center_mask = np.zeros_like(gray)
169
+ center_mask[h//4:3*h//4, w//4:3*w//4] = 1
170
+
171
+ # Combine edge information with center bias
172
+ mask = (edges > np.percentile(edges, 70)) * center_mask
173
+ mask = ndimage.binary_fill_holes(mask)
174
+ mask = ndimage.gaussian_filter(mask.astype(float), sigma=2)
175
+
176
+ return mask
requirements.txt CHANGED
@@ -1,12 +1,16 @@
1
-
2
- gradio==3.41.2
3
- torch
4
- Pillow
5
- opencv-python
6
- einops
7
- transformers==4.36.2
8
  diffusers==0.27.2
 
 
 
9
  safetensors
 
 
10
  peft
 
11
  protobuf==3.20
12
- git+https://github.com/lllyasviel/IC-Light.git
 
 
 
 
1
+ torch>=2.0.0
2
+ torchvision
 
 
 
 
 
3
  diffusers==0.27.2
4
+ transformers==4.36.2
5
+ accelerate
6
+ opencv-python-headless
7
  safetensors
8
+ pillow==10.2.0
9
+ einops
10
  peft
11
+ gradio==3.41.2
12
  protobuf==3.20
13
+ numpy
14
+ scipy
15
+ huggingface_hub
16
+ xformers