Spaces:
Runtime error
Runtime error
from transformers import T5Tokenizer, T5ForConditionalGeneration, Trainer, TrainingArguments | |
from datasets import Dataset | |
from sklearn.model_selection import train_test_split | |
# Load model and tokenizer | |
model_name = "t5-base" | |
tokenizer = T5Tokenizer.from_pretrained(model_name) | |
model = T5ForConditionalGeneration.from_pretrained(model_name) | |
# Prepare the dataset for training | |
def prepare_data(input_texts, target_texts, tokenizer): | |
inputs = tokenizer(input_texts, max_length=512, truncation=True, padding="max_length") | |
targets = tokenizer(target_texts, max_length=512, truncation=True, padding="max_length") | |
return {"input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "labels": targets["input_ids"]} | |
# Paraphrasing function | |
def paraphrase_with_model(text, model, tokenizer): | |
prompt = "Teach the following content: " + text | |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512) | |
output_ids = model.generate( | |
inputs["input_ids"], | |
do_sample=False, # For deterministic results | |
max_length=150, | |
no_repeat_ngram_size=2, | |
early_stopping=True | |
) | |
return tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
# Fine-tuning function | |
def fine_tune_model(input_texts, target_texts): | |
# Split data into training and validation sets | |
train_texts, val_texts, train_labels, val_labels = train_test_split(input_texts, target_texts, test_size=0.1) | |
# Data augmentation with paraphrasing | |
augmented_input_texts = input_texts + [paraphrase_with_model(text, model, tokenizer) for text in input_texts[:10]] | |
augmented_target_texts = target_texts + [paraphrase_with_model(text, model, tokenizer) for text in target_texts[:10]] | |
train_dataset = Dataset.from_dict(prepare_data(augmented_input_texts, augmented_target_texts, tokenizer)) | |
val_dataset = Dataset.from_dict(prepare_data(val_texts, val_labels, tokenizer)) | |
# Training arguments | |
training_args = TrainingArguments( | |
output_dir="./results", | |
evaluation_strategy="steps", | |
learning_rate=5e-5, | |
per_device_train_batch_size=4, | |
num_train_epochs=3, | |
save_steps=500, | |
logging_dir="./logs", | |
logging_steps=10 | |
) | |
# Trainer setup | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset, | |
eval_dataset=val_dataset | |
) | |
# Training | |
trainer.train() | |
# Save the fine-tuned model | |
model.save_pretrained("./fine_tuned_model") | |
tokenizer.save_pretrained("./fine_tuned_model") |