Spaces:
Runtime error
Runtime error
Update fine_tuning.py
Browse files- fine_tuning.py +12 -13
fine_tuning.py
CHANGED
@@ -6,11 +6,10 @@ from nltk.corpus import stopwords
|
|
6 |
from nltk.tokenize import word_tokenize
|
7 |
from nltk.stem import PorterStemmer
|
8 |
|
9 |
-
|
10 |
stop_words = set(stopwords.words('english'))
|
11 |
ps = PorterStemmer()
|
12 |
|
13 |
-
# Metni temizleme fonksiyonu
|
14 |
def clean_text(text):
|
15 |
text = re.sub(r'[^\w\s]', '', text)
|
16 |
text = re.sub(r'\d+', '', text)
|
@@ -19,7 +18,7 @@ def clean_text(text):
|
|
19 |
text = " ".join([ps.stem(word) for word in word_tokenize(text)])
|
20 |
return text
|
21 |
|
22 |
-
|
23 |
def read_prompts(file_path):
|
24 |
input_texts = []
|
25 |
target_texts = []
|
@@ -32,13 +31,14 @@ def read_prompts(file_path):
|
|
32 |
target_texts.append(line.replace("target:", "").strip())
|
33 |
return input_texts, target_texts
|
34 |
|
35 |
-
|
36 |
def prepare_data(input_texts, target_texts):
|
37 |
inputs = tokenizer(input_texts, max_length=512, truncation=True, padding="max_length")
|
38 |
targets = tokenizer(target_texts, max_length=512, truncation=True, padding="max_length")
|
39 |
return {"input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "labels": targets["input_ids"]}
|
40 |
|
41 |
-
|
|
|
42 |
def paraphrase_with_model(text, model, tokenizer):
|
43 |
prompt = "paraphrase: " + text
|
44 |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
@@ -54,26 +54,26 @@ def paraphrase_with_model(text, model, tokenizer):
|
|
54 |
)
|
55 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True, max_length=150)
|
56 |
|
57 |
-
|
58 |
model_name = "t5-base"
|
59 |
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
60 |
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
61 |
|
62 |
-
|
63 |
input_texts, target_texts = read_prompts("prompts.txt")
|
64 |
input_texts_cleaned = [clean_text(text) for text in input_texts]
|
65 |
target_texts_cleaned = [clean_text(text) for text in target_texts]
|
66 |
|
67 |
-
|
68 |
train_texts, val_texts, train_labels, val_labels = train_test_split(input_texts_cleaned, target_texts_cleaned, test_size=0.1)
|
69 |
|
70 |
-
|
71 |
augmented_input_texts = input_texts_cleaned[:10] + [paraphrase_with_model(text, model, tokenizer) for text in input_texts_cleaned[:10]]
|
72 |
augmented_target_texts = target_texts_cleaned[:10] + [paraphrase_with_model(text, model, tokenizer) for text in target_texts_cleaned[:10]]
|
73 |
train_dataset = Dataset.from_dict(prepare_data(augmented_input_texts, augmented_target_texts))
|
74 |
val_dataset = Dataset.from_dict(prepare_data(val_texts, val_labels))
|
75 |
|
76 |
-
|
77 |
training_args = TrainingArguments(
|
78 |
output_dir="./results",
|
79 |
evaluation_strategy="steps",
|
@@ -85,7 +85,7 @@ training_args = TrainingArguments(
|
|
85 |
logging_steps=10
|
86 |
)
|
87 |
|
88 |
-
|
89 |
trainer = Trainer(
|
90 |
model=model,
|
91 |
args=training_args,
|
@@ -93,9 +93,8 @@ trainer = Trainer(
|
|
93 |
eval_dataset=val_dataset
|
94 |
)
|
95 |
|
96 |
-
|
97 |
trainer.train()
|
98 |
|
99 |
-
# Model kaydetme
|
100 |
model.save_pretrained("./fine_tuned_model")
|
101 |
tokenizer.save_pretrained("./fine_tuned_model")
|
|
|
6 |
from nltk.tokenize import word_tokenize
|
7 |
from nltk.stem import PorterStemmer
|
8 |
|
9 |
+
|
10 |
stop_words = set(stopwords.words('english'))
|
11 |
ps = PorterStemmer()
|
12 |
|
|
|
13 |
def clean_text(text):
|
14 |
text = re.sub(r'[^\w\s]', '', text)
|
15 |
text = re.sub(r'\d+', '', text)
|
|
|
18 |
text = " ".join([ps.stem(word) for word in word_tokenize(text)])
|
19 |
return text
|
20 |
|
21 |
+
|
22 |
def read_prompts(file_path):
|
23 |
input_texts = []
|
24 |
target_texts = []
|
|
|
31 |
target_texts.append(line.replace("target:", "").strip())
|
32 |
return input_texts, target_texts
|
33 |
|
34 |
+
|
35 |
def prepare_data(input_texts, target_texts):
|
36 |
inputs = tokenizer(input_texts, max_length=512, truncation=True, padding="max_length")
|
37 |
targets = tokenizer(target_texts, max_length=512, truncation=True, padding="max_length")
|
38 |
return {"input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "labels": targets["input_ids"]}
|
39 |
|
40 |
+
|
41 |
+
|
42 |
def paraphrase_with_model(text, model, tokenizer):
|
43 |
prompt = "paraphrase: " + text
|
44 |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
|
|
54 |
)
|
55 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True, max_length=150)
|
56 |
|
57 |
+
|
58 |
model_name = "t5-base"
|
59 |
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
60 |
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
61 |
|
62 |
+
|
63 |
input_texts, target_texts = read_prompts("prompts.txt")
|
64 |
input_texts_cleaned = [clean_text(text) for text in input_texts]
|
65 |
target_texts_cleaned = [clean_text(text) for text in target_texts]
|
66 |
|
67 |
+
|
68 |
train_texts, val_texts, train_labels, val_labels = train_test_split(input_texts_cleaned, target_texts_cleaned, test_size=0.1)
|
69 |
|
70 |
+
|
71 |
augmented_input_texts = input_texts_cleaned[:10] + [paraphrase_with_model(text, model, tokenizer) for text in input_texts_cleaned[:10]]
|
72 |
augmented_target_texts = target_texts_cleaned[:10] + [paraphrase_with_model(text, model, tokenizer) for text in target_texts_cleaned[:10]]
|
73 |
train_dataset = Dataset.from_dict(prepare_data(augmented_input_texts, augmented_target_texts))
|
74 |
val_dataset = Dataset.from_dict(prepare_data(val_texts, val_labels))
|
75 |
|
76 |
+
|
77 |
training_args = TrainingArguments(
|
78 |
output_dir="./results",
|
79 |
evaluation_strategy="steps",
|
|
|
85 |
logging_steps=10
|
86 |
)
|
87 |
|
88 |
+
|
89 |
trainer = Trainer(
|
90 |
model=model,
|
91 |
args=training_args,
|
|
|
93 |
eval_dataset=val_dataset
|
94 |
)
|
95 |
|
96 |
+
|
97 |
trainer.train()
|
98 |
|
|
|
99 |
model.save_pretrained("./fine_tuned_model")
|
100 |
tokenizer.save_pretrained("./fine_tuned_model")
|