Spaces:
Runtime error
Runtime error
Update fine_tuning.py
Browse files- fine_tuning.py +37 -70
fine_tuning.py
CHANGED
@@ -1,37 +1,11 @@
|
|
1 |
-
import re
|
2 |
-
from nltk.corpus import stopwords
|
3 |
-
from nltk.tokenize import word_tokenize
|
4 |
-
from nltk.stem import PorterStemmer
|
5 |
from transformers import T5Tokenizer, T5ForConditionalGeneration, Trainer, TrainingArguments
|
6 |
from datasets import Dataset
|
7 |
from sklearn.model_selection import train_test_split
|
8 |
-
import nltk
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
# Metni temizleme fonksiyonu
|
16 |
-
def clean_text_for_education(text):
|
17 |
-
text = re.sub(r'[^\w\s]', '', text) # Noktalama işaretlerini temizler
|
18 |
-
text = re.sub(r'\d+', '', text) # Sayıları temizler
|
19 |
-
text = text.lower() # Küçük harfe çevirir
|
20 |
-
text = " ".join([word for word in text.split() if word not in stop_words]) # Stopwords kaldırır
|
21 |
-
return text
|
22 |
-
|
23 |
-
# Prompts okuma
|
24 |
-
def read_prompts(file_path):
|
25 |
-
input_texts = []
|
26 |
-
target_texts = []
|
27 |
-
with open(file_path, "r", encoding="utf-8") as file:
|
28 |
-
lines = file.readlines()
|
29 |
-
for line in lines:
|
30 |
-
if line.startswith("input:"):
|
31 |
-
input_texts.append(line.replace("input:", "").strip())
|
32 |
-
elif line.startswith("target:"):
|
33 |
-
target_texts.append(line.replace("target:", "").strip())
|
34 |
-
return input_texts, target_texts
|
35 |
|
36 |
# Dataset hazırlama
|
37 |
def prepare_data(input_texts, target_texts, tokenizer):
|
@@ -55,48 +29,41 @@ def paraphrase_with_model(text, model, tokenizer):
|
|
55 |
)
|
56 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
57 |
|
58 |
-
#
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
# Veriyi okuma ve temizleme
|
64 |
-
input_texts, target_texts = read_prompts("prompts.txt")
|
65 |
-
input_texts_cleaned = [clean_text_for_education(text) for text in input_texts]
|
66 |
-
target_texts_cleaned = [clean_text_for_education(text) for text in target_texts]
|
67 |
|
68 |
-
#
|
69 |
-
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
#
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
per_device_train_batch_size=4,
|
83 |
-
num_train_epochs=3,
|
84 |
-
save_steps=500,
|
85 |
-
logging_dir="./logs",
|
86 |
-
logging_steps=10
|
87 |
-
)
|
88 |
|
89 |
-
# Trainer
|
90 |
-
trainer = Trainer(
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
)
|
96 |
|
97 |
-
# Eğitim
|
98 |
-
trainer.train()
|
99 |
|
100 |
-
# Model kaydetme
|
101 |
-
model.save_pretrained("./fine_tuned_model")
|
102 |
-
tokenizer.save_pretrained("./fine_tuned_model")
|
|
|
|
|
|
|
|
|
|
|
1 |
from transformers import T5Tokenizer, T5ForConditionalGeneration, Trainer, TrainingArguments
|
2 |
from datasets import Dataset
|
3 |
from sklearn.model_selection import train_test_split
|
|
|
4 |
|
5 |
+
# Tokenizer ve model yükleme
|
6 |
+
model_name = "t5-base"
|
7 |
+
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
8 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Dataset hazırlama
|
11 |
def prepare_data(input_texts, target_texts, tokenizer):
|
|
|
29 |
)
|
30 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
31 |
|
32 |
+
# Eğitim fonksiyonu
|
33 |
+
def fine_tune_model(input_texts, target_texts):
|
34 |
+
# Eğitim ve doğrulama verisini ayırma
|
35 |
+
train_texts, val_texts, train_labels, val_labels = train_test_split(input_texts, target_texts, test_size=0.1)
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
# Augmentasyon ve dataset hazırlama
|
38 |
+
augmented_input_texts = input_texts + [paraphrase_with_model(text, model, tokenizer) for text in input_texts[:10]]
|
39 |
+
augmented_target_texts = target_texts + [paraphrase_with_model(text, model, tokenizer) for text in target_texts[:10]]
|
40 |
+
|
41 |
+
train_dataset = Dataset.from_dict(prepare_data(augmented_input_texts, augmented_target_texts, tokenizer))
|
42 |
+
val_dataset = Dataset.from_dict(prepare_data(val_texts, val_labels, tokenizer))
|
43 |
|
44 |
+
# Eğitim argümanları
|
45 |
+
training_args = TrainingArguments(
|
46 |
+
output_dir="./results",
|
47 |
+
evaluation_strategy="steps",
|
48 |
+
learning_rate=5e-5,
|
49 |
+
per_device_train_batch_size=4,
|
50 |
+
num_train_epochs=3,
|
51 |
+
save_steps=500,
|
52 |
+
logging_dir="./logs",
|
53 |
+
logging_steps=10
|
54 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
# Trainer
|
57 |
+
trainer = Trainer(
|
58 |
+
model=model,
|
59 |
+
args=training_args,
|
60 |
+
train_dataset=train_dataset,
|
61 |
+
eval_dataset=val_dataset
|
62 |
+
)
|
63 |
|
64 |
+
# Eğitim
|
65 |
+
trainer.train()
|
66 |
|
67 |
+
# Model kaydetme
|
68 |
+
model.save_pretrained("./fine_tuned_model")
|
69 |
+
tokenizer.save_pretrained("./fine_tuned_model")
|