Spaces:
Runtime error
Runtime error
Update fine_tuning.py
Browse files- fine_tuning.py +40 -1
fine_tuning.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from transformers import T5Tokenizer, T5ForConditionalGeneration, Trainer, TrainingArguments
|
2 |
from datasets import Dataset
|
3 |
from sklearn.model_selection import train_test_split
|
@@ -6,6 +7,10 @@ from nltk.corpus import stopwords
|
|
6 |
from nltk.tokenize import word_tokenize
|
7 |
from nltk.stem import PorterStemmer
|
8 |
|
|
|
|
|
|
|
|
|
9 |
|
10 |
stop_words = set(stopwords.words('english'))
|
11 |
ps = PorterStemmer()
|
@@ -86,4 +91,38 @@ trainer = Trainer(
|
|
86 |
trainer.train()
|
87 |
|
88 |
model.save_pretrained("./fine_tuned_model")
|
89 |
-
tokenizer.save_pretrained("./fine_tuned_model")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
from transformers import T5Tokenizer, T5ForConditionalGeneration, Trainer, TrainingArguments
|
3 |
from datasets import Dataset
|
4 |
from sklearn.model_selection import train_test_split
|
|
|
7 |
from nltk.tokenize import word_tokenize
|
8 |
from nltk.stem import PorterStemmer
|
9 |
|
10 |
+
# Logging Ayarları
|
11 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
|
15 |
stop_words = set(stopwords.words('english'))
|
16 |
ps = PorterStemmer()
|
|
|
91 |
trainer.train()
|
92 |
|
93 |
model.save_pretrained("./fine_tuned_model")
|
94 |
+
tokenizer.save_pretrained("./fine_tuned_model")
|
95 |
+
|
96 |
+
try:
|
97 |
+
logger.info("Loading tokenizer and model.")
|
98 |
+
model_name = "t5-base"
|
99 |
+
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
100 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
101 |
+
|
102 |
+
logger.info("Reading and cleaning prompts.")
|
103 |
+
input_texts, target_texts = read_prompts("prompts.txt")
|
104 |
+
input_texts_cleaned = [clean_text(text) for text in input_texts]
|
105 |
+
target_texts_cleaned = [clean_text(text) for text in target_texts]
|
106 |
+
|
107 |
+
logger.info("Splitting dataset into training and validation sets.")
|
108 |
+
train_texts, val_texts, train_labels, val_labels = train_test_split(input_texts_cleaned, target_texts_cleaned, test_size=0.1)
|
109 |
+
|
110 |
+
logger.info("Preparing datasets for training.")
|
111 |
+
train_dataset = Dataset.from_dict(prepare_data(train_texts, train_labels))
|
112 |
+
val_dataset = Dataset.from_dict(prepare_data(val_texts, val_labels))
|
113 |
+
|
114 |
+
logger.info("Starting model training.")
|
115 |
+
trainer = Trainer(
|
116 |
+
model=model,
|
117 |
+
args=training_args,
|
118 |
+
train_dataset=train_dataset,
|
119 |
+
eval_dataset=val_dataset
|
120 |
+
)
|
121 |
+
trainer.train()
|
122 |
+
|
123 |
+
logger.info("Saving fine-tuned model.")
|
124 |
+
model.save_pretrained("./fine_tuned_model")
|
125 |
+
tokenizer.save_pretrained("./fine_tuned_model")
|
126 |
+
|
127 |
+
except Exception as e:
|
128 |
+
logger.error(f"An error occurred during fine-tuning: {str(e)}")
|