Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Update utils.py
Browse files
    	
        utils.py
    CHANGED
    
    | @@ -1,7 +1,7 @@ | |
| 1 | 
             
            import logging
         | 
|  | |
|  | |
| 2 | 
             
            from transformers import pipeline, T5Tokenizer, T5ForConditionalGeneration
         | 
| 3 | 
            -
            from pdfminer.high_level import extract_text
         | 
| 4 | 
            -
            from fine_tuning import fine_tune_model
         | 
| 5 |  | 
| 6 |  | 
| 7 | 
             
            logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
         | 
| @@ -15,13 +15,52 @@ fine_tuned_model = T5ForConditionalGeneration.from_pretrained(fine_tuned_model_p | |
| 15 | 
             
            fine_tuned_tokenizer = T5Tokenizer.from_pretrained(fine_tuned_model_path)
         | 
| 16 |  | 
| 17 |  | 
| 18 | 
            -
            def  | 
| 19 | 
             
                try:
         | 
| 20 | 
            -
                     | 
| 21 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 22 | 
             
                except Exception as e:
         | 
| 23 | 
            -
                     | 
| 24 | 
            -
                    raise  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 25 |  | 
| 26 | 
             
            def generate_lesson_from_transcript(doc_text):
         | 
| 27 | 
             
                try:
         | 
| @@ -55,27 +94,3 @@ def refine_with_fine_tuned_model(general_output): | |
| 55 | 
             
                except Exception as e:
         | 
| 56 | 
             
                    logger.error(f"Error during refinement with fine-tuned model: {str(e)}")
         | 
| 57 | 
             
                    return "An error occurred during refinement."
         | 
| 58 | 
            -
             | 
| 59 | 
            -
            def split_text_into_chunks(text, chunk_size=1000):
         | 
| 60 | 
            -
                words = text.split()
         | 
| 61 | 
            -
                chunks = []
         | 
| 62 | 
            -
                for i in range(0, len(words), chunk_size):
         | 
| 63 | 
            -
                    chunk = ' '.join(words[i:i+chunk_size])
         | 
| 64 | 
            -
                    chunks.append(chunk)
         | 
| 65 | 
            -
                return chunks
         | 
| 66 | 
            -
             | 
| 67 | 
            -
            def generate_lesson_from_chunks(chunks):
         | 
| 68 | 
            -
                generated_texts = []
         | 
| 69 | 
            -
                for chunk in chunks:
         | 
| 70 | 
            -
                    try:
         | 
| 71 | 
            -
                        generated_text = pipe(chunk, max_length=500, truncation=True)[0]['generated_text']
         | 
| 72 | 
            -
                        generated_texts.append(generated_text)
         | 
| 73 | 
            -
                    except Exception as e:
         | 
| 74 | 
            -
                        print(f"Error in chunk processing: {str(e)}")
         | 
| 75 | 
            -
                        continue
         | 
| 76 | 
            -
                return ' '.join(generated_texts)
         | 
| 77 | 
            -
             | 
| 78 | 
            -
            def process_large_text(text):
         | 
| 79 | 
            -
                chunks = split_text_into_chunks(text, chunk_size=1000)
         | 
| 80 | 
            -
                generated_text = generate_lesson_from_chunks(chunks)
         | 
| 81 | 
            -
                return generated_text
         | 
|  | |
| 1 | 
             
            import logging
         | 
| 2 | 
            +
            import os
         | 
| 3 | 
            +
            import fitz  
         | 
| 4 | 
             
            from transformers import pipeline, T5Tokenizer, T5ForConditionalGeneration
         | 
|  | |
|  | |
| 5 |  | 
| 6 |  | 
| 7 | 
             
            logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
         | 
|  | |
| 15 | 
             
            fine_tuned_tokenizer = T5Tokenizer.from_pretrained(fine_tuned_model_path)
         | 
| 16 |  | 
| 17 |  | 
| 18 | 
            +
            def extract_text_from_pdf(pdf_path):
         | 
| 19 | 
             
                try:
         | 
| 20 | 
            +
                    if not os.path.exists(pdf_path):
         | 
| 21 | 
            +
                        raise FileNotFoundError(f"PDF file '{pdf_path}' does not exist.")
         | 
| 22 | 
            +
                    
         | 
| 23 | 
            +
                    # PDF dosyasından metni çıkar
         | 
| 24 | 
            +
                    document = fitz.open(pdf_path)
         | 
| 25 | 
            +
                    text = ""
         | 
| 26 | 
            +
                    for page_num in range(document.page_count):
         | 
| 27 | 
            +
                        page = document.load_page(page_num)
         | 
| 28 | 
            +
                        text += page.get_text("text")
         | 
| 29 | 
            +
                    
         | 
| 30 | 
            +
                    print(f"Text extraction successful from {pdf_path}.")
         | 
| 31 | 
            +
                    return text
         | 
| 32 | 
            +
                except FileNotFoundError as e:
         | 
| 33 | 
            +
                    print(f"Error: {e}")
         | 
| 34 | 
            +
                    raise e
         | 
| 35 | 
             
                except Exception as e:
         | 
| 36 | 
            +
                    print(f"An error occurred while extracting text from PDF: {e}")
         | 
| 37 | 
            +
                    raise e
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            def split_text_into_chunks(text, chunk_size=1000):
         | 
| 40 | 
            +
                words = text.split()
         | 
| 41 | 
            +
                chunks = []
         | 
| 42 | 
            +
                for i in range(0, len(words), chunk_size):
         | 
| 43 | 
            +
                    chunk = ' '.join(words[i:i+chunk_size])
         | 
| 44 | 
            +
                    chunks.append(chunk)
         | 
| 45 | 
            +
                return chunks
         | 
| 46 | 
            +
             | 
| 47 | 
            +
            def batch_process_texts(texts, batch_size=2):
         | 
| 48 | 
            +
                batched_results = []
         | 
| 49 | 
            +
                for i in range(0, len(texts), batch_size):
         | 
| 50 | 
            +
                    batch = texts[i:i+batch_size]
         | 
| 51 | 
            +
                    try:
         | 
| 52 | 
            +
                        combined_text = " ".join(batch)
         | 
| 53 | 
            +
                        processed_text = some_processing_function(combined_text)
         | 
| 54 | 
            +
                        batched_results.append(processed_text)
         | 
| 55 | 
            +
                    except Exception as e:
         | 
| 56 | 
            +
                        print(f"Error processing batch {i // batch_size + 1}: {e}")
         | 
| 57 | 
            +
                        continue
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                return batched_results
         | 
| 60 | 
            +
             | 
| 61 | 
            +
            def generate_lesson_from_chunks(chunks):
         | 
| 62 | 
            +
                generated_texts = batch_process_texts(chunks)  
         | 
| 63 | 
            +
                return ' '.join(generated_texts)
         | 
| 64 |  | 
| 65 | 
             
            def generate_lesson_from_transcript(doc_text):
         | 
| 66 | 
             
                try:
         | 
|  | |
| 94 | 
             
                except Exception as e:
         | 
| 95 | 
             
                    logger.error(f"Error during refinement with fine-tuned model: {str(e)}")
         | 
| 96 | 
             
                    return "An error occurred during refinement."
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
