Spaces:
Runtime error
Runtime error
Update fine_tuning.py
Browse files- fine_tuning.py +44 -101
fine_tuning.py
CHANGED
@@ -1,158 +1,101 @@
|
|
1 |
from transformers import T5Tokenizer, T5ForConditionalGeneration, Trainer, TrainingArguments
|
2 |
from datasets import Dataset
|
3 |
from sklearn.model_selection import train_test_split
|
4 |
-
import random
|
5 |
import re
|
6 |
from nltk.corpus import stopwords
|
7 |
from nltk.tokenize import word_tokenize
|
8 |
from nltk.stem import PorterStemmer
|
9 |
|
10 |
-
|
11 |
-
# Satır başlarındaki ve sonlarındaki boşlukları temizleyelim
|
12 |
-
pdf_text = pdf_text.strip()
|
13 |
-
|
14 |
-
# Gereksiz satır aralıklarını kaldırma
|
15 |
-
pdf_text = re.sub(r'\n+', ' ', pdf_text)
|
16 |
-
|
17 |
-
# Sayfa numarası gibi gereksiz kısımları kaldırma (örneğin 'Page 1', 'Page 2' gibi)
|
18 |
-
pdf_text = re.sub(r'\bPage \d+\b', '', pdf_text)
|
19 |
-
|
20 |
-
return pdf_text
|
21 |
-
|
22 |
-
def pdf_to_text(pdf_path):
|
23 |
-
""" Converts PDF to text """
|
24 |
-
pdf_text = extract_text(pdf_path)
|
25 |
-
return clean_pdf_text(pdf_text)
|
26 |
-
|
27 |
-
# Stop words
|
28 |
stop_words = set(stopwords.words('english'))
|
29 |
-
|
30 |
-
# Stemmer
|
31 |
ps = PorterStemmer()
|
32 |
|
33 |
# Metni temizleme fonksiyonu
|
34 |
def clean_text(text):
|
35 |
-
# Noktalama işaretlerini kaldırma
|
36 |
text = re.sub(r'[^\w\s]', '', text)
|
37 |
-
|
38 |
-
# Sayıları kaldırma
|
39 |
text = re.sub(r'\d+', '', text)
|
40 |
-
|
41 |
-
# Küçük harfe çevirme
|
42 |
text = text.lower()
|
43 |
-
|
44 |
-
# Stop words kaldırma
|
45 |
text = " ".join([word for word in text.split() if word not in stop_words])
|
46 |
-
|
47 |
-
# Kelimeleri köklerine indirgeme (stemming)
|
48 |
text = " ".join([ps.stem(word) for word in word_tokenize(text)])
|
49 |
-
|
50 |
return text
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
# Paraphrasing fonksiyonu
|
53 |
def paraphrase_with_model(text, model, tokenizer):
|
54 |
-
prompt = "paraphrase: " + text
|
55 |
-
|
56 |
-
# Tokenizer ile metni tokenlara dönüştürme
|
57 |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
58 |
-
|
59 |
-
# Sampling yöntemi ile model çalıştırma
|
60 |
output_ids = model.generate(
|
61 |
inputs["input_ids"],
|
62 |
-
do_sample=True,
|
63 |
-
top_k=50,
|
64 |
-
top_p=0.95,
|
65 |
-
temperature=1.0,
|
66 |
-
max_length=150,
|
67 |
-
no_repeat_ngram_size=2,
|
68 |
-
early_stopping=True
|
69 |
)
|
70 |
-
|
71 |
-
# Modelin çıktısını decode ederek metni çözme, maksimum uzunluğu sınırlandırın
|
72 |
-
paraphrased_text = tokenizer.decode(output_ids[0], skip_special_tokens=True, max_length=150)
|
73 |
-
|
74 |
-
|
75 |
-
return paraphrased_text
|
76 |
|
77 |
-
# Tokenizer ve
|
78 |
-
model_name = "
|
79 |
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
80 |
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
targets = tokenizer(target_texts, max_length=512, truncation=True, padding=True, return_tensors="pt")
|
85 |
-
|
86 |
-
# Labels olarak hedef metinleri ayarlıyoruz
|
87 |
-
inputs["labels"] = targets["input_ids"]
|
88 |
-
|
89 |
-
# Attention maskeleri de dahil et
|
90 |
-
inputs["attention_mask"] = inputs["attention_mask"]
|
91 |
-
|
92 |
-
return inputs
|
93 |
-
|
94 |
-
|
95 |
-
# Eğitim verileri
|
96 |
-
input_texts = [
|
97 |
-
"Site Reliability Engineering is a concept born at Google. Ben Trainor's team of seven people started it in 2003 to keep Google.com running reliably.",
|
98 |
-
"Reliability is critical for any system. Without reliability, even the best features are useless as users can't access them.",
|
99 |
-
"SRE teams at Google handle large-scale systems with efficiency, working closely with developers to ensure scalability, reliability, and cost-effectiveness.",
|
100 |
-
"Site Reliability Engineering treats operations as a software engineering problem, making it distinct from traditional operations teams."]
|
101 |
-
target_texts = [
|
102 |
-
"SRE was introduced at Google in 2003 by Ben Trainor's team to ensure the reliability of Google.com.",
|
103 |
-
"Reliability is essential for a system to be usable; without it, features lose value.",
|
104 |
-
"Google's SRE teams collaborate with developers to manage large-scale systems efficiently and reliably.",
|
105 |
-
"SRE approaches operations as a software engineering task, revolutionizing traditional operational methods."]
|
106 |
-
|
107 |
-
# Veriyi temizleme
|
108 |
input_texts_cleaned = [clean_text(text) for text in input_texts]
|
109 |
target_texts_cleaned = [clean_text(text) for text in target_texts]
|
110 |
|
111 |
# Eğitim ve doğrulama verisini ayırma
|
112 |
train_texts, val_texts, train_labels, val_labels = train_test_split(input_texts_cleaned, target_texts_cleaned, test_size=0.1)
|
113 |
|
114 |
-
#
|
115 |
-
|
|
|
|
|
116 |
val_dataset = Dataset.from_dict(prepare_data(val_texts, val_labels))
|
117 |
|
118 |
-
# Eğitim verisini augment etmek (opsiyonel)
|
119 |
-
augmented_input_texts = [paraphrase_with_model(text, model, tokenizer) for text in input_texts_cleaned[:10]] # Daha küçük bir örnekle başla
|
120 |
-
augmented_target_texts = [paraphrase_with_model(text, model, tokenizer) for text in target_texts_cleaned[:10]] # Aynı şekilde
|
121 |
-
augmented_dataset = prepare_data(augmented_input_texts, augmented_target_texts)
|
122 |
-
train_dataset = Dataset.from_dict(augmented_dataset)
|
123 |
-
|
124 |
# Eğitim argümanları
|
125 |
training_args = TrainingArguments(
|
126 |
output_dir="./results",
|
127 |
evaluation_strategy="steps",
|
128 |
learning_rate=5e-5,
|
129 |
per_device_train_batch_size=4,
|
130 |
-
per_device_eval_batch_size=4,
|
131 |
num_train_epochs=3,
|
132 |
-
|
133 |
-
save_steps=500, # Modeli her 500 adımda bir kaydet
|
134 |
-
eval_steps=500, # Değerlendirmeyi her 500 adımda bir yap
|
135 |
-
save_total_limit=2,
|
136 |
logging_dir="./logs",
|
137 |
-
logging_steps=10
|
138 |
-
load_best_model_at_end=True
|
139 |
)
|
140 |
|
141 |
-
# Trainer
|
142 |
trainer = Trainer(
|
143 |
model=model,
|
144 |
args=training_args,
|
145 |
train_dataset=train_dataset,
|
146 |
-
eval_dataset=val_dataset
|
147 |
)
|
148 |
|
149 |
-
#
|
150 |
trainer.train()
|
151 |
|
152 |
-
#
|
153 |
model.save_pretrained("./fine_tuned_model")
|
154 |
-
tokenizer.save_pretrained("./fine_tuned_model")
|
155 |
-
|
156 |
-
# Fine-tuned modelinizi yükleyin
|
157 |
-
model = T5ForConditionalGeneration.from_pretrained("./fine_tuned_model")
|
158 |
-
tokenizer = T5Tokenizer.from_pretrained("./fine_tuned_model")
|
|
|
1 |
from transformers import T5Tokenizer, T5ForConditionalGeneration, Trainer, TrainingArguments
|
2 |
from datasets import Dataset
|
3 |
from sklearn.model_selection import train_test_split
|
|
|
4 |
import re
|
5 |
from nltk.corpus import stopwords
|
6 |
from nltk.tokenize import word_tokenize
|
7 |
from nltk.stem import PorterStemmer
|
8 |
|
9 |
+
# Stop words ve stemmer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
stop_words = set(stopwords.words('english'))
|
|
|
|
|
11 |
ps = PorterStemmer()
|
12 |
|
13 |
# Metni temizleme fonksiyonu
|
14 |
def clean_text(text):
|
|
|
15 |
text = re.sub(r'[^\w\s]', '', text)
|
|
|
|
|
16 |
text = re.sub(r'\d+', '', text)
|
|
|
|
|
17 |
text = text.lower()
|
|
|
|
|
18 |
text = " ".join([word for word in text.split() if word not in stop_words])
|
|
|
|
|
19 |
text = " ".join([ps.stem(word) for word in word_tokenize(text)])
|
|
|
20 |
return text
|
21 |
|
22 |
+
# Prompts okuma
|
23 |
+
def read_prompts(file_path):
|
24 |
+
input_texts = []
|
25 |
+
target_texts = []
|
26 |
+
with open(file_path, "r", encoding="utf-8") as file:
|
27 |
+
lines = file.readlines()
|
28 |
+
for line in lines:
|
29 |
+
if line.startswith("input:"):
|
30 |
+
input_texts.append(line.replace("input:", "").strip())
|
31 |
+
elif line.startswith("target:"):
|
32 |
+
target_texts.append(line.replace("target:", "").strip())
|
33 |
+
return input_texts, target_texts
|
34 |
+
|
35 |
+
# Dataset hazırlama
|
36 |
+
def prepare_data(input_texts, target_texts):
|
37 |
+
inputs = tokenizer(input_texts, max_length=512, truncation=True, padding="max_length")
|
38 |
+
targets = tokenizer(target_texts, max_length=512, truncation=True, padding="max_length")
|
39 |
+
return {"input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "labels": targets["input_ids"]}
|
40 |
+
|
41 |
# Paraphrasing fonksiyonu
|
42 |
def paraphrase_with_model(text, model, tokenizer):
|
43 |
+
prompt = "paraphrase: " + text
|
|
|
|
|
44 |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
|
|
|
|
45 |
output_ids = model.generate(
|
46 |
inputs["input_ids"],
|
47 |
+
do_sample=True,
|
48 |
+
top_k=50,
|
49 |
+
top_p=0.95,
|
50 |
+
temperature=1.0,
|
51 |
+
max_length=150,
|
52 |
+
no_repeat_ngram_size=2,
|
53 |
+
early_stopping=True
|
54 |
)
|
55 |
+
return tokenizer.decode(output_ids[0], skip_special_tokens=True, max_length=150)
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
# Tokenizer ve model yükleme
|
58 |
+
model_name = "t5-base"
|
59 |
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
60 |
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
61 |
|
62 |
+
# Veriyi okuma ve temizleme
|
63 |
+
input_texts, target_texts = read_prompts("prompts.txt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
input_texts_cleaned = [clean_text(text) for text in input_texts]
|
65 |
target_texts_cleaned = [clean_text(text) for text in target_texts]
|
66 |
|
67 |
# Eğitim ve doğrulama verisini ayırma
|
68 |
train_texts, val_texts, train_labels, val_labels = train_test_split(input_texts_cleaned, target_texts_cleaned, test_size=0.1)
|
69 |
|
70 |
+
# Augmentasyon ve dataset hazırlama
|
71 |
+
augmented_input_texts = input_texts_cleaned[:10] + [paraphrase_with_model(text, model, tokenizer) for text in input_texts_cleaned[:10]]
|
72 |
+
augmented_target_texts = target_texts_cleaned[:10] + [paraphrase_with_model(text, model, tokenizer) for text in target_texts_cleaned[:10]]
|
73 |
+
train_dataset = Dataset.from_dict(prepare_data(augmented_input_texts, augmented_target_texts))
|
74 |
val_dataset = Dataset.from_dict(prepare_data(val_texts, val_labels))
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
# Eğitim argümanları
|
77 |
training_args = TrainingArguments(
|
78 |
output_dir="./results",
|
79 |
evaluation_strategy="steps",
|
80 |
learning_rate=5e-5,
|
81 |
per_device_train_batch_size=4,
|
|
|
82 |
num_train_epochs=3,
|
83 |
+
save_steps=500,
|
|
|
|
|
|
|
84 |
logging_dir="./logs",
|
85 |
+
logging_steps=10
|
|
|
86 |
)
|
87 |
|
88 |
+
# Trainer
|
89 |
trainer = Trainer(
|
90 |
model=model,
|
91 |
args=training_args,
|
92 |
train_dataset=train_dataset,
|
93 |
+
eval_dataset=val_dataset
|
94 |
)
|
95 |
|
96 |
+
# Eğitim
|
97 |
trainer.train()
|
98 |
|
99 |
+
# Model kaydetme
|
100 |
model.save_pretrained("./fine_tuned_model")
|
101 |
+
tokenizer.save_pretrained("./fine_tuned_model")
|
|
|
|
|
|
|
|