Spaces:
Runtime error
Runtime error
Update fine_tuning.py
Browse files- fine_tuning.py +47 -59
fine_tuning.py
CHANGED
@@ -41,62 +41,50 @@ def prepare_data(input_texts, target_texts):
|
|
41 |
targets = tokenizer(target_texts, max_length=512, truncation=True, padding="max_length")
|
42 |
return {"input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "labels": targets["input_ids"]}
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
args=training_args,
|
92 |
-
train_dataset=train_dataset,
|
93 |
-
eval_dataset=val_dataset
|
94 |
-
)
|
95 |
-
trainer.train()
|
96 |
-
|
97 |
-
logger.info("Saving fine-tuned model.")
|
98 |
-
model.save_pretrained("./fine_tuned_model")
|
99 |
-
tokenizer.save_pretrained("./fine_tuned_model")
|
100 |
-
|
101 |
-
except Exception as e:
|
102 |
-
logger.error(f"An error occurred during fine-tuning: {str(e)}")
|
|
|
41 |
targets = tokenizer(target_texts, max_length=512, truncation=True, padding="max_length")
|
42 |
return {"input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "labels": targets["input_ids"]}
|
43 |
|
44 |
+
# Fine-tuning
|
45 |
+
def fine_tune_model():
|
46 |
+
model_name = "t5-base"
|
47 |
+
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
48 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
49 |
+
|
50 |
+
try:
|
51 |
+
logger.info("Reading and cleaning prompts.")
|
52 |
+
input_texts, target_texts = read_prompts("prompts.txt")
|
53 |
+
input_texts_cleaned = [clean_text(text) for text in input_texts]
|
54 |
+
target_texts_cleaned = [clean_text(text) for text in target_texts]
|
55 |
+
|
56 |
+
logger.info("Splitting dataset into training and validation sets.")
|
57 |
+
train_texts, val_texts, train_labels, val_labels = train_test_split(input_texts_cleaned, target_texts_cleaned, test_size=0.1)
|
58 |
+
|
59 |
+
logger.info("Preparing datasets for training.")
|
60 |
+
train_dataset = Dataset.from_dict(prepare_data(train_texts, train_labels, tokenizer))
|
61 |
+
val_dataset = Dataset.from_dict(prepare_data(val_texts, val_labels, tokenizer))
|
62 |
+
|
63 |
+
training_args = TrainingArguments(
|
64 |
+
output_dir="./results",
|
65 |
+
evaluation_strategy="steps",
|
66 |
+
learning_rate=5e-5,
|
67 |
+
per_device_train_batch_size=4,
|
68 |
+
num_train_epochs=3,
|
69 |
+
save_steps=500,
|
70 |
+
logging_dir="./logs",
|
71 |
+
logging_steps=10
|
72 |
+
)
|
73 |
+
|
74 |
+
logger.info("Starting model training.")
|
75 |
+
trainer = Trainer(
|
76 |
+
model=model,
|
77 |
+
args=training_args,
|
78 |
+
train_dataset=train_dataset,
|
79 |
+
eval_dataset=val_dataset
|
80 |
+
)
|
81 |
+
trainer.train()
|
82 |
+
|
83 |
+
logger.info("Saving fine-tuned model.")
|
84 |
+
model.save_pretrained("./fine_tuned_model")
|
85 |
+
tokenizer.save_pretrained("./fine_tuned_model")
|
86 |
+
|
87 |
+
except Exception as e:
|
88 |
+
logger.error(f"An error occurred during fine-tuning: {str(e)}")
|
89 |
+
|
90 |
+
fine_tune_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|