Spaces:
Runtime error
Runtime error
Update fine_tuning.py
Browse files- fine_tuning.py +31 -55
fine_tuning.py
CHANGED
@@ -3,24 +3,27 @@ from transformers import T5Tokenizer, T5ForConditionalGeneration, Trainer, Train
|
|
3 |
from datasets import Dataset
|
4 |
from sklearn.model_selection import train_test_split
|
5 |
import re
|
6 |
-
from nltk.corpus import stopwords
|
7 |
-
from nltk.tokenize import word_tokenize
|
8 |
-
from nltk.stem import PorterStemmer
|
9 |
|
10 |
# Logging Ayarları
|
11 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
12 |
logger = logging.getLogger(__name__)
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
def clean_text(text):
|
19 |
-
|
20 |
-
text = re.sub(r'\
|
21 |
-
text =
|
22 |
-
text =
|
23 |
-
text = " ".join([
|
|
|
24 |
return text
|
25 |
|
26 |
def read_prompts(file_path):
|
@@ -46,59 +49,21 @@ def paraphrase_with_model(text, model, tokenizer):
|
|
46 |
output_ids = model.generate(
|
47 |
inputs["input_ids"],
|
48 |
do_sample=True,
|
49 |
-
top_k=40,
|
50 |
-
top_p=0.9,
|
51 |
-
temperature=0.8,
|
52 |
-
max_length=200,
|
53 |
-
no_repeat_ngram_size=3,
|
54 |
early_stopping=True
|
55 |
)
|
56 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
57 |
|
|
|
58 |
model_name = "t5-base"
|
59 |
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
60 |
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
61 |
|
62 |
-
input_texts, target_texts = read_prompts("prompts.txt")
|
63 |
-
input_texts_cleaned = [clean_text(text) for text in input_texts]
|
64 |
-
target_texts_cleaned = [clean_text(text) for text in target_texts]
|
65 |
-
|
66 |
-
train_texts, val_texts, train_labels, val_labels = train_test_split(input_texts_cleaned, target_texts_cleaned, test_size=0.1)
|
67 |
-
|
68 |
-
augmented_input_texts = input_texts_cleaned[:10] + [paraphrase_with_model(text, model, tokenizer) for text in input_texts_cleaned[:10]]
|
69 |
-
augmented_target_texts = target_texts_cleaned[:10] + [paraphrase_with_model(text, model, tokenizer) for text in target_texts_cleaned[:10]]
|
70 |
-
train_dataset = Dataset.from_dict(prepare_data(augmented_input_texts, augmented_target_texts))
|
71 |
-
val_dataset = Dataset.from_dict(prepare_data(val_texts, val_labels))
|
72 |
-
|
73 |
-
training_args = TrainingArguments(
|
74 |
-
output_dir="./results",
|
75 |
-
evaluation_strategy="steps",
|
76 |
-
learning_rate=5e-5,
|
77 |
-
per_device_train_batch_size=4,
|
78 |
-
num_train_epochs=3,
|
79 |
-
save_steps=500,
|
80 |
-
logging_dir="./logs",
|
81 |
-
logging_steps=10
|
82 |
-
)
|
83 |
-
|
84 |
-
trainer = Trainer(
|
85 |
-
model=model,
|
86 |
-
args=training_args,
|
87 |
-
train_dataset=train_dataset,
|
88 |
-
eval_dataset=val_dataset
|
89 |
-
)
|
90 |
-
|
91 |
-
trainer.train()
|
92 |
-
|
93 |
-
model.save_pretrained("./fine_tuned_model")
|
94 |
-
tokenizer.save_pretrained("./fine_tuned_model")
|
95 |
-
|
96 |
try:
|
97 |
-
logger.info("Loading tokenizer and model.")
|
98 |
-
model_name = "t5-base"
|
99 |
-
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
100 |
-
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
101 |
-
|
102 |
logger.info("Reading and cleaning prompts.")
|
103 |
input_texts, target_texts = read_prompts("prompts.txt")
|
104 |
input_texts_cleaned = [clean_text(text) for text in input_texts]
|
@@ -111,6 +76,17 @@ try:
|
|
111 |
train_dataset = Dataset.from_dict(prepare_data(train_texts, train_labels))
|
112 |
val_dataset = Dataset.from_dict(prepare_data(val_texts, val_labels))
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
logger.info("Starting model training.")
|
115 |
trainer = Trainer(
|
116 |
model=model,
|
|
|
3 |
from datasets import Dataset
|
4 |
from sklearn.model_selection import train_test_split
|
5 |
import re
|
|
|
|
|
|
|
6 |
|
7 |
# Logging Ayarları
|
8 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
9 |
logger = logging.getLogger(__name__)
|
10 |
|
11 |
+
stop_words = {"and", "or", "but", "the", "is", "are", "was", "were", "a", "an", "in", "on", "at", "of", "to", "with"} # Örnek stop words
|
12 |
+
def stem_word(word):
|
13 |
+
"""PorterStemmer yerine basit bir gövdeleme fonksiyonu."""
|
14 |
+
suffixes = ['ing', 'ed', 'ly', 's', 'es', 'er']
|
15 |
+
for suffix in suffixes:
|
16 |
+
if word.endswith(suffix):
|
17 |
+
return word[:-len(suffix)]
|
18 |
+
return word
|
19 |
|
20 |
def clean_text(text):
|
21 |
+
"""Metin temizleme fonksiyonu."""
|
22 |
+
text = re.sub(r'[^\w\s]', '', text) # Noktalama işaretlerini kaldır
|
23 |
+
text = re.sub(r'\d+', '', text) # Sayıları kaldır
|
24 |
+
text = text.lower() # Küçük harfe çevir
|
25 |
+
text = " ".join([word for word in text.split() if word not in stop_words]) # Stop words kaldır
|
26 |
+
text = " ".join([stem_word(word) for word in text.split()]) # Gövdeleme
|
27 |
return text
|
28 |
|
29 |
def read_prompts(file_path):
|
|
|
49 |
output_ids = model.generate(
|
50 |
inputs["input_ids"],
|
51 |
do_sample=True,
|
52 |
+
top_k=40,
|
53 |
+
top_p=0.9,
|
54 |
+
temperature=0.8,
|
55 |
+
max_length=200,
|
56 |
+
no_repeat_ngram_size=3,
|
57 |
early_stopping=True
|
58 |
)
|
59 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
60 |
|
61 |
+
# Model ve Tokenizer Yükleme
|
62 |
model_name = "t5-base"
|
63 |
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
64 |
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
try:
|
|
|
|
|
|
|
|
|
|
|
67 |
logger.info("Reading and cleaning prompts.")
|
68 |
input_texts, target_texts = read_prompts("prompts.txt")
|
69 |
input_texts_cleaned = [clean_text(text) for text in input_texts]
|
|
|
76 |
train_dataset = Dataset.from_dict(prepare_data(train_texts, train_labels))
|
77 |
val_dataset = Dataset.from_dict(prepare_data(val_texts, val_labels))
|
78 |
|
79 |
+
training_args = TrainingArguments(
|
80 |
+
output_dir="./results",
|
81 |
+
evaluation_strategy="steps",
|
82 |
+
learning_rate=5e-5,
|
83 |
+
per_device_train_batch_size=4,
|
84 |
+
num_train_epochs=3,
|
85 |
+
save_steps=500,
|
86 |
+
logging_dir="./logs",
|
87 |
+
logging_steps=10
|
88 |
+
)
|
89 |
+
|
90 |
logger.info("Starting model training.")
|
91 |
trainer = Trainer(
|
92 |
model=model,
|