Spaces:
Runtime error
Runtime error
Update fine_tuning.py
Browse files- fine_tuning.py +141 -49
fine_tuning.py
CHANGED
@@ -1,66 +1,158 @@
|
|
1 |
from transformers import T5Tokenizer, T5ForConditionalGeneration, Trainer, TrainingArguments
|
2 |
from datasets import Dataset
|
3 |
from sklearn.model_selection import train_test_split
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
#
|
11 |
-
def
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
# Paraphrasing
|
17 |
def paraphrase_with_model(text, model, tokenizer):
|
18 |
-
prompt = "
|
|
|
|
|
19 |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
|
|
|
|
20 |
output_ids = model.generate(
|
21 |
inputs["input_ids"],
|
22 |
-
do_sample=
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
26 |
)
|
27 |
-
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
#
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
learning_rate=5e-5,
|
46 |
-
per_device_train_batch_size=4,
|
47 |
-
num_train_epochs=3,
|
48 |
-
save_steps=500,
|
49 |
-
logging_dir="./logs",
|
50 |
-
logging_steps=10
|
51 |
-
)
|
52 |
|
53 |
-
# Trainer setup
|
54 |
-
trainer = Trainer(
|
55 |
-
model=model,
|
56 |
-
args=training_args,
|
57 |
-
train_dataset=train_dataset,
|
58 |
-
eval_dataset=val_dataset
|
59 |
-
)
|
60 |
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
1 |
from transformers import T5Tokenizer, T5ForConditionalGeneration, Trainer, TrainingArguments
|
2 |
from datasets import Dataset
|
3 |
from sklearn.model_selection import train_test_split
|
4 |
+
import random
|
5 |
+
import re
|
6 |
+
from nltk.corpus import stopwords
|
7 |
+
from nltk.tokenize import word_tokenize
|
8 |
+
from nltk.stem import PorterStemmer
|
9 |
|
10 |
+
def clean_pdf_text(pdf_text):
|
11 |
+
# Satır başlarındaki ve sonlarındaki boşlukları temizleyelim
|
12 |
+
pdf_text = pdf_text.strip()
|
13 |
+
|
14 |
+
# Gereksiz satır aralıklarını kaldırma
|
15 |
+
pdf_text = re.sub(r'\n+', ' ', pdf_text)
|
16 |
+
|
17 |
+
# Sayfa numarası gibi gereksiz kısımları kaldırma (örneğin 'Page 1', 'Page 2' gibi)
|
18 |
+
pdf_text = re.sub(r'\bPage \d+\b', '', pdf_text)
|
19 |
+
|
20 |
+
return pdf_text
|
21 |
+
|
22 |
+
def pdf_to_text(pdf_path):
|
23 |
+
""" Converts PDF to text """
|
24 |
+
pdf_text = extract_text(pdf_path)
|
25 |
+
return clean_pdf_text(pdf_text)
|
26 |
+
|
27 |
+
# Stop words
|
28 |
+
stop_words = set(stopwords.words('english'))
|
29 |
+
|
30 |
+
# Stemmer
|
31 |
+
ps = PorterStemmer()
|
32 |
|
33 |
+
# Metni temizleme fonksiyonu
|
34 |
+
def clean_text(text):
|
35 |
+
# Noktalama işaretlerini kaldırma
|
36 |
+
text = re.sub(r'[^\w\s]', '', text)
|
37 |
+
|
38 |
+
# Sayıları kaldırma
|
39 |
+
text = re.sub(r'\d+', '', text)
|
40 |
+
|
41 |
+
# Küçük harfe çevirme
|
42 |
+
text = text.lower()
|
43 |
+
|
44 |
+
# Stop words kaldırma
|
45 |
+
text = " ".join([word for word in text.split() if word not in stop_words])
|
46 |
+
|
47 |
+
# Kelimeleri köklerine indirgeme (stemming)
|
48 |
+
text = " ".join([ps.stem(word) for word in word_tokenize(text)])
|
49 |
+
|
50 |
+
return text
|
51 |
|
52 |
+
# Paraphrasing fonksiyonu
|
53 |
def paraphrase_with_model(text, model, tokenizer):
|
54 |
+
prompt = "paraphrase: " + text # T5 modeline paraphrasing görevi verdiğimizi belirtiyoruz.
|
55 |
+
|
56 |
+
# Tokenizer ile metni tokenlara dönüştürme
|
57 |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
58 |
+
|
59 |
+
# Sampling yöntemi ile model çalıştırma
|
60 |
output_ids = model.generate(
|
61 |
inputs["input_ids"],
|
62 |
+
do_sample=True, # Sampling modunu aktif hale getirme
|
63 |
+
top_k=50, # Top-k sampling
|
64 |
+
top_p=0.95, # Top-p sampling
|
65 |
+
temperature=1.0, # Daha fazla çeşitlilik için temperature
|
66 |
+
max_length=150, # Maksimum cümle uzunluğu
|
67 |
+
no_repeat_ngram_size=2, # Aynı n-gramların tekrarını engelle
|
68 |
+
early_stopping=True # Daha erken durdurma
|
69 |
)
|
70 |
+
|
71 |
+
# Modelin çıktısını decode ederek metni çözme, maksimum uzunluğu sınırlandırın
|
72 |
+
paraphrased_text = tokenizer.decode(output_ids[0], skip_special_tokens=True, max_length=150)
|
73 |
|
74 |
+
|
75 |
+
return paraphrased_text
|
76 |
+
|
77 |
+
# Tokenizer ve modelin yüklenmesi
|
78 |
+
model_name = "google-t5/t5-base"
|
79 |
+
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
80 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
81 |
|
82 |
+
def prepare_data(input_texts, target_texts):
|
83 |
+
inputs = tokenizer(input_texts, max_length=512, truncation=True, padding=True, return_tensors="pt")
|
84 |
+
targets = tokenizer(target_texts, max_length=512, truncation=True, padding=True, return_tensors="pt")
|
85 |
|
86 |
+
# Labels olarak hedef metinleri ayarlıyoruz
|
87 |
+
inputs["labels"] = targets["input_ids"]
|
88 |
+
|
89 |
+
# Attention maskeleri de dahil et
|
90 |
+
inputs["attention_mask"] = inputs["attention_mask"]
|
91 |
+
|
92 |
+
return inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
+
# Eğitim verileri
|
96 |
+
input_texts = [
|
97 |
+
"Site Reliability Engineering is a concept born at Google. Ben Trainor's team of seven people started it in 2003 to keep Google.com running reliably.",
|
98 |
+
"Reliability is critical for any system. Without reliability, even the best features are useless as users can't access them.",
|
99 |
+
"SRE teams at Google handle large-scale systems with efficiency, working closely with developers to ensure scalability, reliability, and cost-effectiveness.",
|
100 |
+
"Site Reliability Engineering treats operations as a software engineering problem, making it distinct from traditional operations teams."]
|
101 |
+
target_texts = [
|
102 |
+
"SRE was introduced at Google in 2003 by Ben Trainor's team to ensure the reliability of Google.com.",
|
103 |
+
"Reliability is essential for a system to be usable; without it, features lose value.",
|
104 |
+
"Google's SRE teams collaborate with developers to manage large-scale systems efficiently and reliably.",
|
105 |
+
"SRE approaches operations as a software engineering task, revolutionizing traditional operational methods."]
|
106 |
+
|
107 |
+
# Veriyi temizleme
|
108 |
+
input_texts_cleaned = [clean_text(text) for text in input_texts]
|
109 |
+
target_texts_cleaned = [clean_text(text) for text in target_texts]
|
110 |
+
|
111 |
+
# Eğitim ve doğrulama verisini ayırma
|
112 |
+
train_texts, val_texts, train_labels, val_labels = train_test_split(input_texts_cleaned, target_texts_cleaned, test_size=0.1)
|
113 |
+
|
114 |
+
# Eğitim ve doğrulama verilerini hazırlama
|
115 |
+
train_dataset = Dataset.from_dict(prepare_data(train_texts, train_labels))
|
116 |
+
val_dataset = Dataset.from_dict(prepare_data(val_texts, val_labels))
|
117 |
+
|
118 |
+
# Eğitim verisini augment etmek (opsiyonel)
|
119 |
+
augmented_input_texts = [paraphrase_with_model(text, model, tokenizer) for text in input_texts_cleaned[:10]] # Daha küçük bir örnekle başla
|
120 |
+
augmented_target_texts = [paraphrase_with_model(text, model, tokenizer) for text in target_texts_cleaned[:10]] # Aynı şekilde
|
121 |
+
augmented_dataset = prepare_data(augmented_input_texts, augmented_target_texts)
|
122 |
+
train_dataset = Dataset.from_dict(augmented_dataset)
|
123 |
+
|
124 |
+
# Eğitim argümanları
|
125 |
+
training_args = TrainingArguments(
|
126 |
+
output_dir="./results",
|
127 |
+
evaluation_strategy="steps",
|
128 |
+
learning_rate=5e-5,
|
129 |
+
per_device_train_batch_size=4,
|
130 |
+
per_device_eval_batch_size=4,
|
131 |
+
num_train_epochs=3,
|
132 |
+
weight_decay=0.01,
|
133 |
+
save_steps=500, # Modeli her 500 adımda bir kaydet
|
134 |
+
eval_steps=500, # Değerlendirmeyi her 500 adımda bir yap
|
135 |
+
save_total_limit=2,
|
136 |
+
logging_dir="./logs",
|
137 |
+
logging_steps=10,
|
138 |
+
load_best_model_at_end=True
|
139 |
+
)
|
140 |
+
|
141 |
+
# Trainer tanımı
|
142 |
+
trainer = Trainer(
|
143 |
+
model=model,
|
144 |
+
args=training_args,
|
145 |
+
train_dataset=train_dataset,
|
146 |
+
eval_dataset=val_dataset # Değerlendirme kümesi eklenmeli
|
147 |
+
)
|
148 |
+
|
149 |
+
# Fine-tuning başlatma
|
150 |
+
trainer.train()
|
151 |
+
|
152 |
+
# Fine-tuned modelin kaydedilmesi
|
153 |
+
model.save_pretrained("./fine_tuned_model")
|
154 |
+
tokenizer.save_pretrained("./fine_tuned_model")
|
155 |
|
156 |
+
# Fine-tuned modelinizi yükleyin
|
157 |
+
model = T5ForConditionalGeneration.from_pretrained("./fine_tuned_model")
|
158 |
+
tokenizer = T5Tokenizer.from_pretrained("./fine_tuned_model")
|