import logging import gradio as gr from utils import process_large_text, generate_lesson_from_transcript as generate_lesson_from_transcript_logic from pdfminer.high_level import extract_text # Logging Ayarları logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") logger = logging.getLogger(__name__) def pdf_to_text(pdf_path): try: logger.info(f"Extracting text from PDF: {pdf_path}") return extract_text(pdf_path) except Exception as e: logger.error(f"Error while extracting text from PDF: {str(e)}") raise ValueError(f"PDF extraction error: {str(e)}") def generate_lesson(doc_text=None, pdf_file=None): try: if pdf_file and doc_text: logger.warning("Both text and PDF file provided. Ignoring text input.") return "Please provide either a text input or a PDF file, not both.", None if pdf_file: logger.info(f"Processing uploaded PDF file: {pdf_file.name}") doc_text = pdf_to_text(pdf_file.name) logger.info("Processing the document text with general model.") general_model_output = process_large_text(doc_text) logger.info("Refining the output with fine-tuned model.") refined_output = refine_with_fine_tuned_model(general_model_output) output_path = "/tmp/refined_output.txt" with open(output_path, "w") as file: file.write(refined_output) logger.info(f"Lesson generated successfully. Output saved to: {output_path}") return refined_output, gr.File(output_path) except Exception as e: logger.error(f"Error occurred while generating lesson: {str(e)}") return f"Error occurred: {str(e)}", None gr.Interface( fn=generate_lesson, inputs=[gr.Textbox(label="Input Text"), gr.File(label="Upload PDF")], outputs=["text", "file"], ).launch()