from transformers import pipeline pipe = pipeline("text2text-generation", model="google-t5/t5-base", device="cpu") pipe.model.config.pad_token_id = pipe.tokenizer.eos_token_id def generate_lesson_from_transcript(doc_text): try: generated_text = pipe(doc_text, max_length=100, truncation=True)[0]['generated_text'] output_path = "/tmp/generated_output.txt" with open(output_path, "w") as file: file.write(generated_text) return generated_text, output_path except Exception as e: print(f"Bir hata oluştu: {str(e)}") return "Bir hata oluştu", None def split_text_into_chunks(text, chunk_size=1000): words = text.split() chunks = [] for i in range(0, len(words), chunk_size): chunk = ' '.join(words[i:i+chunk_size]) chunks.append(chunk) return chunks def generate_lesson_from_chunks(chunks): generated_texts = [] for chunk in chunks: generated_text = pipe(chunk, max_length=500)[0]['generated_text'] generated_texts.append(generated_text) return ' '.join(generated_texts) def process_large_text(text): chunks = split_text_into_chunks(text, chunk_size=1000) generated_text = generate_lesson_from_chunks(chunks) return generated_text