Running The App
Browse files- .env +4 -0
- README.md +11 -11
- __pycache__/main.cpython-312.pyc +0 -0
- app.py +107 -0
- requirements.txt +5 -0
- static/index.html +127 -0
.env
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
GOOGLE_API_KEY=AIzaSyCzkwTikgJrpB-7ViBlDSmcXJq-GyrfNm4
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
|
README.md
CHANGED
|
@@ -1,12 +1,12 @@
|
|
| 1 |
-
|
| 2 |
-
title: Inbody
|
| 3 |
-
emoji: ⚡
|
| 4 |
-
colorFrom: red
|
| 5 |
-
colorTo: pink
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version: 5.33.2
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# InBody Fitness Analysis AI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
This is a FastAPI-powered app using LangChain + Gemini to generate:
|
| 4 |
+
- InBody report analysis
|
| 5 |
+
- Training plan
|
| 6 |
+
- Nutrition plan
|
| 7 |
+
- Weekly regime
|
| 8 |
+
|
| 9 |
+
Frontend: HTML/JS
|
| 10 |
+
Backend: FastAPI with LangChain & Google Gemini
|
| 11 |
+
|
| 12 |
+
Hosted on Hugging Face Spaces 🎯
|
__pycache__/main.cpython-312.pyc
ADDED
|
Binary file (3.98 kB). View file
|
|
|
app.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, Request
|
| 2 |
+
from fastapi.responses import HTMLResponse
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
+
from langchain.chains import LLMChain
|
| 5 |
+
from langchain.prompts import PromptTemplate
|
| 6 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 7 |
+
import uvicorn
|
| 8 |
+
import os
|
| 9 |
+
from dotenv import load_dotenv
|
| 10 |
+
|
| 11 |
+
load_dotenv()
|
| 12 |
+
|
| 13 |
+
app = FastAPI()
|
| 14 |
+
|
| 15 |
+
# Serve HTML form at /inbody
|
| 16 |
+
@app.get("/inbody", response_class=HTMLResponse)
|
| 17 |
+
async def serve_ui():
|
| 18 |
+
with open("static/index.html", "r", encoding="utf-8") as f:
|
| 19 |
+
return f.read()
|
| 20 |
+
|
| 21 |
+
# Input data schema
|
| 22 |
+
class InBodyRequest(BaseModel):
|
| 23 |
+
name: str
|
| 24 |
+
age: int
|
| 25 |
+
sex: str
|
| 26 |
+
report: str
|
| 27 |
+
|
| 28 |
+
# Prompt chains
|
| 29 |
+
analyze_prompt = PromptTemplate.from_template("""
|
| 30 |
+
You are a world-class certified fitness and health coach with deep expertise in human physiology, sports science, and nutrition.
|
| 31 |
+
|
| 32 |
+
Name: {name}
|
| 33 |
+
Age: {age}
|
| 34 |
+
Sex: {sex}
|
| 35 |
+
|
| 36 |
+
InBody Report:
|
| 37 |
+
{report}
|
| 38 |
+
|
| 39 |
+
Based on the above, provide a professional analysis:
|
| 40 |
+
- Identify key strengths and weaknesses.
|
| 41 |
+
- Highlight red flags or areas of concern.
|
| 42 |
+
- Use precise, expert language and back your insights with reasoning.
|
| 43 |
+
""")
|
| 44 |
+
|
| 45 |
+
analyze_chain = LLMChain(
|
| 46 |
+
llm=ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0.5),
|
| 47 |
+
prompt=analyze_prompt,
|
| 48 |
+
output_key="analysis"
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
training_prompt = PromptTemplate.from_template("""
|
| 52 |
+
Based on this analysis: {analysis}
|
| 53 |
+
Design a weekly training plan that includes cardio, strength training, and flexibility to improve body composition and overall fitness.
|
| 54 |
+
""")
|
| 55 |
+
|
| 56 |
+
training_chain = LLMChain(
|
| 57 |
+
llm=ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0.7),
|
| 58 |
+
prompt=training_prompt,
|
| 59 |
+
output_key="training_plan"
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
nutrition_prompt = PromptTemplate.from_template("""
|
| 63 |
+
Based on the following analysis: {analysis}
|
| 64 |
+
And this training plan: {training_plan}
|
| 65 |
+
Generate a personalized nutritional plan to reduce body fat, support muscle growth, and optimize recovery. Include macro goals and sample meals.
|
| 66 |
+
""")
|
| 67 |
+
|
| 68 |
+
nutrition_chain = LLMChain(
|
| 69 |
+
llm=ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0.7),
|
| 70 |
+
prompt=nutrition_prompt,
|
| 71 |
+
output_key="nutrition_plan"
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
regime_prompt = PromptTemplate.from_template("""
|
| 75 |
+
Combine this training plan: {training_plan}
|
| 76 |
+
And this nutrition plan: {nutrition_plan}
|
| 77 |
+
Into a clear daily/weekly schedule. Include timing suggestions and when to eat, train, and rest for optimal results.
|
| 78 |
+
""")
|
| 79 |
+
|
| 80 |
+
regime_chain = LLMChain(
|
| 81 |
+
llm=ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0.6),
|
| 82 |
+
prompt=regime_prompt,
|
| 83 |
+
output_key="regime"
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
# Combine all chains
|
| 87 |
+
total_chain = analyze_chain | training_chain | nutrition_chain | regime_chain
|
| 88 |
+
|
| 89 |
+
# POST endpoint for form submission
|
| 90 |
+
@app.post("/inbody")
|
| 91 |
+
def process_inbody(input: InBodyRequest):
|
| 92 |
+
result = total_chain.invoke({
|
| 93 |
+
"name": input.name,
|
| 94 |
+
"age": input.age,
|
| 95 |
+
"sex": input.sex,
|
| 96 |
+
"report": input.report
|
| 97 |
+
})
|
| 98 |
+
return {
|
| 99 |
+
"analysis": result["analysis"],
|
| 100 |
+
"training_plan": result["training_plan"],
|
| 101 |
+
"nutrition_plan": result["nutrition_plan"],
|
| 102 |
+
"regime": result["regime"]
|
| 103 |
+
}
|
| 104 |
+
|
| 105 |
+
# 🚀 Hugging Face Spaces entry point
|
| 106 |
+
def start():
|
| 107 |
+
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=False)
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn
|
| 3 |
+
langchain
|
| 4 |
+
python-dotenv
|
| 5 |
+
langchain-google-genai
|
static/index.html
ADDED
|
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html lang="en">
|
| 3 |
+
<head>
|
| 4 |
+
<meta charset="UTF-8">
|
| 5 |
+
<title>InBody Analysis</title>
|
| 6 |
+
<style>
|
| 7 |
+
body {
|
| 8 |
+
font-family: Arial, sans-serif;
|
| 9 |
+
padding: 40px;
|
| 10 |
+
max-width: 700px;
|
| 11 |
+
margin: auto;
|
| 12 |
+
background-color: #f4f4f4;
|
| 13 |
+
}
|
| 14 |
+
label {
|
| 15 |
+
display: block;
|
| 16 |
+
margin-top: 10px;
|
| 17 |
+
}
|
| 18 |
+
textarea, input, select {
|
| 19 |
+
width: 100%;
|
| 20 |
+
padding: 8px;
|
| 21 |
+
margin-top: 5px;
|
| 22 |
+
}
|
| 23 |
+
button {
|
| 24 |
+
margin-top: 20px;
|
| 25 |
+
padding: 10px 20px;
|
| 26 |
+
font-size: 16px;
|
| 27 |
+
}
|
| 28 |
+
.output {
|
| 29 |
+
margin-top: 30px;
|
| 30 |
+
padding: 20px;
|
| 31 |
+
background-color: white;
|
| 32 |
+
border-radius: 10px;
|
| 33 |
+
}
|
| 34 |
+
.loader {
|
| 35 |
+
border: 4px solid #f3f3f3;
|
| 36 |
+
border-top: 4px solid #3498db;
|
| 37 |
+
border-radius: 50%;
|
| 38 |
+
width: 18px;
|
| 39 |
+
height: 18px;
|
| 40 |
+
animation: spin 1s linear infinite;
|
| 41 |
+
display: inline-block;
|
| 42 |
+
vertical-align: middle;
|
| 43 |
+
margin-right: 8px;
|
| 44 |
+
}
|
| 45 |
+
@keyframes spin {
|
| 46 |
+
0% { transform: rotate(0deg); }
|
| 47 |
+
100% { transform: rotate(360deg); }
|
| 48 |
+
}
|
| 49 |
+
</style>
|
| 50 |
+
</head>
|
| 51 |
+
<body>
|
| 52 |
+
|
| 53 |
+
<h2>InBody AI Analysis</h2>
|
| 54 |
+
|
| 55 |
+
<label for="name">Name:</label>
|
| 56 |
+
<input id="name" type="text" placeholder="Enter your name" required>
|
| 57 |
+
|
| 58 |
+
<label for="age">Age:</label>
|
| 59 |
+
<input id="age" type="number" placeholder="Enter your age" required>
|
| 60 |
+
|
| 61 |
+
<label for="sex">Sex:</label>
|
| 62 |
+
<select id="sex">
|
| 63 |
+
<option value="male">Male</option>
|
| 64 |
+
<option value="female">Female</option>
|
| 65 |
+
</select>
|
| 66 |
+
|
| 67 |
+
<label for="report">InBody Report:</label>
|
| 68 |
+
<textarea id="report" rows="6" placeholder="Enter raw InBody report..."></textarea>
|
| 69 |
+
|
| 70 |
+
<button id="analyze-btn">Analyze</button>
|
| 71 |
+
|
| 72 |
+
<!-- Loading animation -->
|
| 73 |
+
<div id="loading" style="display: none; margin-top: 20px; font-weight: bold; color: blue;">
|
| 74 |
+
<span class="loader"></span> Processing your InBody report...
|
| 75 |
+
</div>
|
| 76 |
+
|
| 77 |
+
<!-- Output -->
|
| 78 |
+
<div class="output">
|
| 79 |
+
<h3>🧠 Analysis:</h3>
|
| 80 |
+
<p id="analysis"></p>
|
| 81 |
+
|
| 82 |
+
<h3>💪 Training Plan:</h3>
|
| 83 |
+
<p id="training"></p>
|
| 84 |
+
|
| 85 |
+
<h3>🥗 Nutrition Plan:</h3>
|
| 86 |
+
<p id="nutrition"></p>
|
| 87 |
+
|
| 88 |
+
<h3>📅 Weekly Regime:</h3>
|
| 89 |
+
<p id="regime"></p>
|
| 90 |
+
</div>
|
| 91 |
+
|
| 92 |
+
<script>
|
| 93 |
+
document.getElementById("analyze-btn").addEventListener("click", async () => {
|
| 94 |
+
const name = document.getElementById("name").value;
|
| 95 |
+
const age = parseInt(document.getElementById("age").value);
|
| 96 |
+
const sex = document.getElementById("sex").value;
|
| 97 |
+
const report = document.getElementById("report").value;
|
| 98 |
+
|
| 99 |
+
const loadingDiv = document.getElementById("loading");
|
| 100 |
+
loadingDiv.style.display = "block";
|
| 101 |
+
|
| 102 |
+
try {
|
| 103 |
+
const response = await fetch("http://localhost:8000/inbody", {
|
| 104 |
+
method: "POST",
|
| 105 |
+
headers: {
|
| 106 |
+
"Content-Type": "application/json"
|
| 107 |
+
},
|
| 108 |
+
body: JSON.stringify({ name, age, sex, report })
|
| 109 |
+
});
|
| 110 |
+
|
| 111 |
+
const result = await response.json();
|
| 112 |
+
|
| 113 |
+
document.getElementById("analysis").textContent = result.analysis;
|
| 114 |
+
document.getElementById("training").textContent = result.training_plan;
|
| 115 |
+
document.getElementById("nutrition").textContent = result.nutrition_plan;
|
| 116 |
+
document.getElementById("regime").textContent = result.regime;
|
| 117 |
+
} catch (error) {
|
| 118 |
+
alert("Something went wrong. Please check your backend.");
|
| 119 |
+
console.error(error);
|
| 120 |
+
} finally {
|
| 121 |
+
loadingDiv.style.display = "none";
|
| 122 |
+
}
|
| 123 |
+
});
|
| 124 |
+
</script>
|
| 125 |
+
|
| 126 |
+
</body>
|
| 127 |
+
</html>
|