File size: 4,747 Bytes
a88bb44
4f9fb0d
a88bb44
 
 
 
 
 
 
 
 
130940f
a88bb44
 
 
6e5acc2
a88bb44
4f9fb0d
 
a88bb44
 
 
 
 
 
 
 
 
 
 
 
 
 
cd5da5d
 
130940f
a88bb44
 
 
 
 
 
1176392
130940f
a88bb44
 
130940f
a88bb44
 
 
 
 
 
 
 
 
 
 
 
 
1176392
a88bb44
 
1176392
a88bb44
 
 
 
 
 
 
77779dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba62ed4
 
a88bb44
 
 
 
1176392
 
a88bb44
 
ba66b21
130940f
 
a88bb44
130940f
a88bb44
 
3d9d07f
130940f
 
 
 
 
 
a88bb44
130940f
a88bb44
 
77779dc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import glob
import os
from copy import deepcopy

import gradio as gr
import numpy as np
import PIL
import spaces
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from safetensors.torch import load_file
from torchvision.transforms import ToPILImage, ToTensor
from transformers import AutoModelForImageSegmentation
from utils import extract_object, get_model_from_config, resize_and_center_crop

huggingface_token = os.getenv("HUGGINGFACE_TOKEN")

ASPECT_RATIOS = {
    str(512 / 2048): (512, 2048),
    str(1024 / 1024): (1024, 1024),
    str(2048 / 512): (2048, 512),
    str(896 / 1152): (896, 1152),
    str(1152 / 896): (1152, 896),
    str(512 / 1920): (512, 1920),
    str(640 / 1536): (640, 1536),
    str(768 / 1280): (768, 1280),
    str(1280 / 768): (1280, 768),
    str(1536 / 640): (1536, 640),
    str(1920 / 512): (1920, 512),
}

MODEL_PATH = hf_hub_download("jasperai/LBM_relighting", "model.safetensors", token=huggingface_token)
CONFIG_PATH = hf_hub_download("jasperai/LBM_relighting", "config.yaml", token=huggingface_token)

with open(CONFIG_PATH, "r") as f:
    config = yaml.safe_load(f)
model = get_model_from_config(**config)
sd = load_file(MODEL_PATH)
model.load_state_dict(sd, strict=True)
model.to("cuda").to(torch.bfloat16)
birefnet = AutoModelForImageSegmentation.from_pretrained("ZhengPeng7/BiRefNet", trust_remote_code=True).cuda()
image_size = (1024, 1024)

@spaces.GPU
def evaluate(fg_image: PIL.Image.Image, bg_image: PIL.Image.Image, num_sampling_steps: int = 4):
    ori_h_bg, ori_w_bg = fg_image.size
    ar_bg = ori_h_bg / ori_w_bg
    closest_ar_bg = min(ASPECT_RATIOS, key=lambda x: abs(float(x) - ar_bg))
    dimensions_bg = ASPECT_RATIOS[closest_ar_bg]

    _, fg_mask = extract_object(birefnet, deepcopy(fg_image))

    fg_image = resize_and_center_crop(fg_image, dimensions_bg[0], dimensions_bg[1])
    fg_mask = resize_and_center_crop(fg_mask, dimensions_bg[0], dimensions_bg[1])
    bg_image = resize_and_center_crop(bg_image, dimensions_bg[0], dimensions_bg[1])

    img_pasted = Image.composite(fg_image, bg_image, fg_mask)
    img_pasted_tensor = ToTensor()(img_pasted).unsqueeze(0) * 2 - 1
    batch = {"source_image": img_pasted_tensor.cuda().to(torch.bfloat16)}

    z_source = model.vae.encode(batch[model.source_key])
    output_image = model.sample(z=z_source, num_steps=num_sampling_steps, conditioner_inputs=batch, max_samples=1).clamp(-1, 1)
    output_image = (output_image[0].float().cpu() + 1) / 2
    output_image = ToPILImage()(output_image)
    output_image = Image.composite(output_image, bg_image, fg_mask)
    output_image.resize((ori_h_bg, ori_w_bg))

    return (np.array(img_pasted), np.array(output_image))

with gr.Blocks() as app:
    gr.HTML("""
    <style>
    body::before {
        content: "";
        display: block;
        height: 320px;
        background-color: var(--body-background-fill);
    }
    button[aria-label="Fullscreen"], button[aria-label="Fullscreen"]:hover {
        display: none !important;
        visibility: hidden !important;
        opacity: 0 !important;
        pointer-events: none !important;
    }
    button[aria-label="Share"], button[aria-label="Share"]:hover {
        display: none !important;
    }
    button[aria-label="Download"] {
        transform: scale(3);
        transform-origin: top right;
        margin: 0 !important;
        padding: 6px !important;
    }
    </style>
    """)

    gr.Markdown("# Ndrysho Sfondin")
    gr.Markdown("Zëvendëso sfondin e fotove me rindriçim të avancuar nga inteligjenca artificiale.")

    with gr.Row():
        with gr.Column():
            with gr.Row():
                fg_image = gr.Image(type="pil", label="Imazhi Kryesor", image_mode="RGB", height=360)
                bg_image = gr.Image(type="pil", label="Sfondi i Ri", image_mode="RGB", height=360)

            with gr.Row():
                submit_button = gr.Button("Rindriço")
            with gr.Row():
                num_inference_steps = gr.Slider(minimum=1, maximum=4, value=4, step=1, visible=False)

            bg_gallery = gr.Gallery(object_fit="contain", visible=False)

        with gr.Column():
            output_slider = gr.ImageSlider(label="Para / Pas", type="numpy")
            output_slider.upload(fn=evaluate, inputs=[fg_image, bg_image, num_inference_steps], outputs=[output_slider])

    submit_button.click(evaluate, inputs=[fg_image, bg_image, num_inference_steps], outputs=[output_slider], show_progress="full", show_api=False)

    def bg_gallery_selected(gal, evt: gr.SelectData):
        return gal[evt.index][0]

    bg_gallery.select(bg_gallery_selected, inputs=bg_gallery, outputs=bg_image)

if __name__ == "__main__":
    app.launch(share=True)